Solar Energy News
STELLAR CHEMISTRY
Study reveals complex chemistry inside 'stellar nurseries'
The main species discussed in this work.
Study reveals complex chemistry inside 'stellar nurseries'
by Staff Writers
Boulder CO (SPX) Feb 07, 2023

An international team of researchers has uncovered what might be a critical step in the chemical evolution of molecules in cosmic "stellar nurseries." In these vast clouds of cold gas and dust in space, trillions of molecules swirl together over millions of years. The collapse of these interstellar clouds eventually gives rise to young stars and planets.

Like human bodies, stellar nurseries contain a lot of organic molecules, which are made up mostly of carbon and hydrogen atoms. The group's results, published Feb. 6 in the journal Nature Astronomy, reveal how certain large organic molecules may form inside these clouds. It's one tiny step in the eons-long chemical journey that carbon atoms undergo-forming in the hearts of dying stars, then becoming part of planets, living organisms on Earth and perhaps beyond.

"In these cold molecular clouds, you're creating the first building blocks that will, in the end, form stars and planets," said Jordy Bouwman, research associate at the Laboratory for Atmospheric and Space Physics (LASP) and assistant professor in the Department of Chemistry at the University of Colorado Boulder.

For the new study, Bouwman and his colleagues took a deep dive into one stellar nursery in particular: the Taurus Molecular Cloud (TMC-1). This region sits in the constellation Taurus and is roughly 440 light years (more than 2 quadrillion miles) from Earth. This chemically complex environment is an example of what astronomers call an "accreting starless core." Its cloud has begun to collapse, but scientists haven't yet detected embryonic stars emerging inside it.

The team's findings hinge on a deceptively simple molecule called ortho-benzyne. Drawing on experiments on Earth and computer simulations, the researchers showed that this molecule can readily combine with others in space to form a wide range of larger organic molecules.

Small building blocks, in other words, become big building blocks.

And, Bouwman said, those reactions could be a sign that stellar nurseries are a lot more interesting than scientists give them credit for.

"We're only at the start of truly understanding how we go from these small building blocks to larger molecules," he said. "I think we'll find that this chemistry is so much more complex than we thought, even at the earliest stages of star formation."

Fateful observation
Bouwman is a cosmochemist, studying a field that blends chemistry and astronomy to understand the churning chemical reactions that happen deep in space.

On the surface, he said, cold molecular clouds might not seem like a hotbed of chemical activity. As their name suggests, these galactic primordial soups tend to be frigid, often hovering around -263 degrees Celsius (about -440 degrees Fahrenheit), just 10 degrees above absolute zero. Most reactions need at least a little bit of heat to get a kick-start.

But cold or not, complex chemistry seems to be happening in stellar nurseries. TMC-1, in particular, contains surprising concentrations of relatively large organic molecules with names like fulvenallene and 1- and 2-ethynylcyclopentadiene. Chemists call them "five-membered ring compounds" because they each contain a ring of carbon atoms shaped like a pentagon.

"Researchers kept detecting these molecules in TMC-1, but their origin was unclear," Bouwman said.

Now, he and his colleagues think they have an answer.

In 2021, researchers using the Yebes 40-metre Radiotelescope in Spain found an unexpected molecule hiding in the clouds of gas of TMC-1: ortho-benzyne. Bouwman explained that this small molecule, made up of a ring of six carbon atoms with four hydrogens, is one of the extroverts of the chemistry world. It easily interacts with a number of other molecules and doesn't require a lot of heat to do so.

"There's no barrier to reaction," Bouwman said. "That means that it has the potential to drive complex chemistry in cold environments."

Identifying the culprit
To find out what kind of complex chemistry was happening in TMC-1, Bouwman and his colleagues-who hail from the United States, Germany, the Netherlands and Switzerland-turned to a technique called "photoelectron photoion coincidence spectroscopy." The team used light generated by a giant facility called a synchrotron light source to identify the products of chemical reactions. They saw that ortho-benzyne and methyl radicals, another common constituent of molecular clouds, readily combine to form larger and more complex organic compounds.

"We knew we were onto something good," Bouwman said.

The team then drew on computer models to explore the role of ortho-benzyne in a stellar nursery spread out over several light years deep in space. The results were promising: The models generated clouds of gas containing roughly the same mix of organic molecules that astronomers had observed in TMC-1 using telescopes.

Ortho-benzyne, in other words, seems to be a prime candidate for driving the gas-phase organic chemistry that occurs within these stellar nurseries, Bouwman said.

He added that scientists still have a lot of work to do to fully understand all the reactions happening in TMC-1. He wants to examine, for example, how organic molecules in space also pick up nitrogen atoms-key components of the DNA and amino acids of living organisms on Earth.

"Our findings may just change the view on what ingredients we have in the first place to form new stars and new planets," Bouwman said.

Research Report:Five-membered ring compounds from ortho-benzyne + methyl radical reaction under interstellar conditions

Related Links
University of Colorado at Boulder
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Untangling a knot of galaxy clusters
Boston MA (SPX) Jan 31, 2023
Astronomers have captured a spectacular, ongoing collision between at least three galaxy clusters. Data from NASA's Chandra X-ray Observatory, ESA's (European Space Agency's) XMM-Newton, and a trio of radio telescopes is helping astronomers sort out what is happening in this jumbled scene. Collisions and mergers like this are the main way that galaxy clusters can grow into the gigantic cosmic edifices seen today. These also act as the largest particle accelerators in the universe. The giant galaxy ... read more

STELLAR CHEMISTRY
Biorefinery uses microbial fuel cell to upcycle resistant plant waste

Emirates announces 'milestone' sustainable fuel flight

Farming more seaweed to be food, feed and fuel

MSU discovery advances biofuel crop that could curb dependence on fossil fuel

STELLAR CHEMISTRY
High-speed, high-precision positioning of stages with unknown vibration characteristics

AI supercharges battle of web search titans

Solving a machine-learning mystery

Google to release ChatGPT-like bot named Bard

STELLAR CHEMISTRY
Machine learning could help kites and gliders to harvest wind energy

New research shows porpoises not harmed by offshore windfarms

UH professor developing new technologies to improve safety, resiliency of offshore energy systems

A healthy wind

STELLAR CHEMISTRY
Researchers propose a fourth light on traffic signals - for self-driving cars

Battery electric trucks emit 63% less GHG emissions than diesel

Electric trucks produce far fewer emissions than diesel: EU report

Spain court rules against Amazon over freelance drivers

STELLAR CHEMISTRY
AiDash launches joint grid resilience offering with Schneider Electric

Stanford scientists illuminate barrier to next-generation battery that charges very quickly

How to develop better rechargeable aluminum batteries

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries

STELLAR CHEMISTRY
Belgium plans to extend life of three nuclear reactors

Belgium to shut down controversial nuclear reactor

Japan reactor shuts down after alert, no radiation rise seen

GE Hitachi signs contract for the first North American Small Modular Reactor

STELLAR CHEMISTRY
No lights, no water: S.Africans fume at cascading crisis

Europe looks to geothermal energy as gas alternative

All who can should pay even for their basic greenhouse gas emissions

Energy industry must be part of climate fight, says COP president

STELLAR CHEMISTRY
Brazil deploys police as miners flee Yanomami territory

General forest management critical for ecosystem services even with climate change

Planting more trees could decrease deaths from higher summer temperatures in cities by a third

Lebanese villagers try to stem illegal logging scourge

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.