Solar Energy News  
SPACE MEDICINE
Studying DNA Breaks to Protect Future Space Travelers
by Melissa Gaskill for ISS Science News
Houston TX (SPX) May 13, 2019

The miniPCR device, used to make multiple copies of a particular strand of DNA in space.

Earth's atmosphere shields life on the ground from cosmic radiation that can damage DNA. Astronauts in space have no such protection, and that puts them at risk. An investigation on the International Space Station examines DNA damage and repair in space in order to help protect the long-term health of space travelers.

An organism carries all of its genetic information in its deoxyribonucleic acid or DNA. This blueprint for life takes the form of specific sequences of nitrogen bases: adenine, cytosine, guanine, and thymine, represented by the letters A, C, G and T.

One type of DNA damage is double strand breaks, essentially a cut across both strands of DNA. Cells repair these breaks almost immediately, but can make errors, inserting or deleting DNA bases and creating mutations. These mutations may result in diseases such as cancer. Genes in Space-6 looks at the specific mechanism cells use to repair double strand breaks in space.

The investigation takes cells of the yeast Saccharomyces cerevisiae to the space station, where astronauts cause a specific type of damage to its DNA using a genome editing tool known as CRISPR-Cas9. The astronauts allow the cells to repair this damage, then make many copies of the repaired section using a process called polymerase chain reaction (PCR) with an onboard device, the miniPCR. Another device, MinION, is then used to sequence the repaired section of DNA in those copies. Sequencing shows the exact order of the bases, revealing whether the repair restored the DNA to its original order or made errors.

The investigation represents a number of firsts, including the first use of CRISPR-Cas9 genetic editing on the space station and the first time scientists evaluate the entire damage and repair process in space.

"The damage actually happens on the space station and the analysis also happens in space," said one of the investigators from miniPCR Bio, Emily Gleason. "We want to understand if DNA repair methods are different in space than on Earth."

This investigation is part of the Genes in Space program. Founded by miniPCR and Boeing, the program challenges students to come up with DNA experiments in space that involve using the PCR technique and the miniPCR device on the station. Students submit ideas online, and the program chooses five finalists. These finalists are paired with a mentor scientist who helps them turn their idea into a presentation for the ISS Research and Development Conference. A panel of judges selects one proposed experiment to fly to the space station.

"We want to inspire students to think like scientists and give them the opportunity for an authentic science experience that doesn't cost them anything," says Gleason. More than 550 student teams submitted ideas last year. The Genes in Space-6 investigation student team includes Michelle Sung, Rebecca Li, and Aarthi Vijayakumar at Mounds View High School in Arden Hills, Minnesota, and David Li, now a freshman at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. Their mentor is Kutay Deniz Atabay at MIT.

Other investigators include Sarah E. Stahl and Sarah Wallace with NASA's Johnson Space Center Microbiology group in Houston; G. Guy Bushkin, Whitehead Institute for Biomedical Research, Cambridge; Melissa L. Boyer, Teresa K. Tan, Kevin D. Foley, and D. Scott Copeland at Boeing; and Ezequiel Alvarez Saavedra, Gleason, and Sebastian Kraves at Amplyus LLC, in Cambridge. Amplyus is the parent company of miniPCR Bio.

"One thing the investigation will tell us is yes, we can do these things in space," said Gleason. "We expect to see the yeast use the error-free method of repair more frequently, which is what we see on Earth; but we don't know for sure whether it will be the same or not. Ultimately, we can use this knowledge to help protect astronauts from DNA damage caused by cosmic radiation on long voyages and to enable genome editing in space."

The procedures used in this investigation may have applications for protecting people from radiation and other hazards in remote and harsh locations on Earth as well.


Related Links
Space Station Research and Technology
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Vital signs can now be monitored using radar
Waterloo, Canada (SPX) May 05, 2019
A radar system developed at the University of Waterloo can wirelessly monitor the vital signs of patients, eliminating the need to hook them up to any machines. Housed in a device smaller than a cellphone, the new technology records heart and breathing rates using sensitive radar waves that are analyzed by sophisticated algorithms embedded in an onboard digital signal processing unit. Researchers developed the system to monitor sleep apnea patients by detecting subtle chest movements instead ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Researchers develop viable, environmentally friendly alternative to Styrofoam

Methane-consuming bacteria could be the future of fuel

The secrets of secretion: isolating eucalyptus genes for oils, biofuel

Industry-ready process makes plastics chemical from plant sugars

SPACE MEDICINE
Beyond the Metal: Investigating Soft Robots at NASA Langley

DIH-HERO - a medical robotics network

Training AI to win a dogfight

SIS advances smart multi-robot autonomy

SPACE MEDICINE
UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

SPACE MEDICINE
Rideshare drivers strike as Uber poised to go public

Uber stock set to launch at $45 a share

In milestone, Uber makes Wall Street debut

GM autonomous unit Cruise valued at $19 billion in funding round

SPACE MEDICINE
New class of catalysts for energy conversion

Army discovery opens path to safer batteries

New crystalline material boasts electronic properties never before seen

Manipulating superconductivity using a 'mechanic' and an 'electrician'

SPACE MEDICINE
Three Mile Island nuclear plant to close by September 30

Experimental device generates electricity from the coldness of the universe

Public dread of nuclear power limits its use

Framatome works with Exelon Generation to install Enhanced Accident Tolerant Fuel assemblies

SPACE MEDICINE
Adding satnav to turn power grids into smart systems

Siemens inches forward in race to revamp Iraq's grid

US charges Chinese engineer with stealing GE technology

New York mayor targets classic skyscrapers with Green New Deal

SPACE MEDICINE
Researchers document the oldest known trees in eastern North America

Climate change is giving old trees a growth spurt

Illegal haul of Gabonese sacred wood disappears

Attacks on Brazil's ecological paradises threaten biodiversity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.