Solar Energy News  
TECH SPACE
Studying the Van Allen Belts 60 years after America's first spacecraft
by Mara Johnson-Groh for GSFC News
Greenbelt MD (SPX) Feb 02, 2018

illustration only

Tick, tick, tick. The device - a Geiger counter strapped to a miniature tape recorder - was registering radiation levels a thousand times greater than anyone expected. As the instrument moved higher, more than 900 miles above the surface, the counts ceased. Scientists were baffled. It was early 1958, the United States had just launched its first spacecraft, and a new discipline of physics was about to be born.

Sixty years ago, the United States launched its first satellite into space. Dubbed Explorer 1, the spacecraft followed just months after the Soviet Union's Sputnik 1 and 2 spacecraft commenced the Space Age. Data captured by the Geiger counter aboard Explorer 1 heralded the emergence of space physics and ushered in a new era of technology and communications.

Far above Earth's atmosphere, the radiation picked up by the instrument aboard Explorer 1 wasn't of Earthly origin. In fact, it was from a region scientists previously considered largely void of particles. Prior to launch, scientists expected to measure cosmic rays - high-energy particles primarily originating beyond the solar system - which they had previously studied with ground- and balloon-based instruments. But what they found far outpaced the levels of radiation that would be expected from cosmic rays alone.

The radiation recorded by Explorer 1 was humanity's first glimpse of Earth's radiation belts, two concentric rings of energetic particles surrounding the planet. The inner belt, composed predominantly of protons, and the outer belt, mostly electrons, would come to be named the Van Allen Belts, after James Van Allen, the scientist who led the charge designing the instruments and studying the radiation data from Explorer 1.

The outer belt is made up of billions of high-energy particles that originate from the Sun and become trapped in Earth's magnetic field, an area known as the magnetosphere. The inner belt results from interactions of cosmic rays with Earth's atmosphere. Satellites that unwittingly or intentionally venture into the belts can be damaged by the radiation, which could have an impact on unprotected astronauts as well. Understanding the dynamics of this region is essential for protecting technological assets and planning crewed space missions.

"Our current technology is ever more susceptible to these accelerated particles because even a single hit from a particle can upset our ever smaller instruments and electronics," said David Sibeck, Van Allen Probes mission scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"As technology advances, it's actually becoming even more pressing to understand and predict our space environment."

Sixty years later, scientists are still working to understand the peculiar and puzzling nature of the Van Allen Belts. In 2012, NASA launched the twin Van Allen Probes to study particle behavior in the dynamic region. Equipped with superior, radiation-hardened technology, the Van Allen Probes' instruments go far beyond Explorer 1's Geiger counter to observe particles, waves and fields in the radiation belts.

"We study the Van Allen radiation belts both for scientific reasons - to understand particle acceleration, which occurs through the universe - and practical reasons - because particles accelerated to high energies are a hazard to both astronauts and spacecraft," Sibeck said.

"At Earth, we can study these details and apply that knowledge both to our journey to Mars and to better protect astronauts at the Moon."

From the beginning, the Van Allen Probes set a pace of rapid discovery. Within days of their launch, the probes found the void between the inner and outer belts - which was thought to be empty - was occupied by a third, temporary belt. The third belt lasted just a month, but appeared again later in the mission with major solar activity.

Explorer 1's discoveries six decades ago paved the way for new generations of spacecraft to explore the radiation belts. Today, with the help of other missions, like the Time History of Events and Macroscale Interactions during Substorms, or THEMIS, and Magnetospheric Multiscale, or MMS, missions, NASA scientists are continually unveiling new secrets in our magnetic space neighborhood.

Multipoint observations are essential to understanding the belts' dynamics and in 2016, the Japan Aerospace Exploration Agency, or JAXA, launched the satellite Arase to cooperate with the Van Allen Probes mission in studying the radiation belts. A new CubeSat mission, the Compact Radiation Belt Explorer or CERES, is scheduled to launch in April 2018 to work in conjunction with the Van Allen Probes, studying the interactions between plasma waves and electrons in Earth's upper atmosphere.

"We don't know what other discoveries are hidden in the radiation belts," said Shrikanth Kanekal, Van Allen Probes deputy mission scientist and CERES principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"As technology improves, who knows what we'll be able to find."


Related Links
Van Allen Probes at NASA
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Putting everyday computer parts to space radiation test
Paris (ESA) Jan 30, 2018
ESA's next mission, the miniature GomX-4B, includes a piggyback experiment to test how well everyday commercial computer memories perform in the radiation-soaked environment of space. Ready to be launched from China this Friday, GomX-4B was built from six standard 10 cm CubeSat units by GomSpace in Denmark. Its main goal is to test radio links between satellites and micropropulsion, but GomX-4B also carryies a small, cheap but important secondary experiment: a single 10x10cm electronics boar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Bio-renewable process could help 'green' plastic

To maximize sugarcane harvesting, use the right blade

The making of biorelevant nanomaterials

Malaysia protest against EU push to ban palm oil in biofuels

TECH SPACE
NIST's superconducting synapse may be missing piece for 'artificial brains'

Applying machine learning to the universe's mysteries

Let's make a deal: Could AI compromise better than humans?

Dutch robots help make cheese, 'smell' the roses

TECH SPACE
Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

Scotland sets up $83 million low-carbon fund

German offshore wind farm closer to powering mainland

TECH SPACE
Waymo ramps up self-driving fleet with 'thousands' of cars

NREL research determines integration of plug-in electric vehicles

VW hid 'devastating' result from diesel exhaust tests on monkeys

VW suspends chief lobbyist over emission tests on monkeys

TECH SPACE
Making fuel cells for a fraction of the cost

Coupling experiments to theory to build a better battery

20 percent more trees in megacities would mean cleaner air and water, lower carbon and energy use

Graphene girders doubles life of lithium batteries

TECH SPACE
Thorium reactors may dispose of enormous amounts of weapons-grade plutonium

Framatome continues ramping up production at its Le Creusot site

USA: Framatome to acquire Instrumentation and Control nuclear business of Schneider Electric

Framatome nuclear fuel contract with CNNC

TECH SPACE
State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

US energy watchdog rejects plan to subsidize coal, nuclear sectors

U.S. utility regulator ponders grid reliability

TECH SPACE
Forest conservation can have greater ecological impacts by allowing sustainable harvesting

Plan to protect Indonesian peatlands with aerial mapping wins $1m

Deforestation destroys more dry forest than climate change

Chile boosts protected parkland with US philanthropist's donations









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.