Subscribe free to our newsletters via your
. Solar Energy News .




BIO FUEL
Super-microbes engineered to solve world environmental problems
by Staff Writers
Seoul, Korea (SPX) Oct 10, 2012


illustration only

Environmental problems, such as depleting natural resources, highlight the need to establish a renewable chemical industry. Metabolic engineering enhances the production of chemicals made by microbes in so-called "cell factories".

Next Monday, world class scientist Professor Sang Yup Lee of KAIST (Korea Advanced Institute of Science and Technology) will explain how metabolic engineering could lead to the development of solutions to these environmental problems.

For example, the polyester polylactic acid (PLA) is a biodegradable material with a wide range of uses, from medical implants, to cups, bags, food packaging and disposable tableware. It and its co-polymer can be produced by direct fermentation of renewable resources using metabolically engineered Escherichia coli. 1 (image available - see note 3).

Microorganisms isolated from nature use their own metabolism to produce certain chemicals. But they are often inefficient, so metabolic engineering is used to improve microbial performance. Beginning in the 1990s, metabolic engineering involves the modification of microbial cells to enhance the production of what's known as a bioproduct.

This bioproduct can be something that the cell produces naturally, like ethanol or butanol. It can also be something that the cells mechanisms can produce if their natural metabolic pathways are altered in some way.

The range of uses of this bioproduct can be broadened through metabolic engineering, which can also optimize the overall process of bioproduct synthesis.

Recently, metabolic engineering has become more powerful, through the integration of itself with systems and synthetic biology.

Systems biology is a relatively new approach to biological research which looks at the complex interactions within whole cell systems. It allows cell-wide understanding of metabolic reactions and the way these are regulated by the cell's genes.

Synthetic biology is another new approach that designs and constructs new biological functions and systems that aren't found in nature. It allows the design of new genes, modules and circuits that can be used to modulate the cells metabolism to make more of the desired bioproduct.

So systems metabolic engineering can now develop superior microorganisms much more efficiently through the integration of itself with systems biology and synthetic biology.

Professor Lee will introduce general strategies for systems metabolic engineering which will be accompanied by many successful examples, including the production of chemicals, fuels and materials such as propanol, butanol, 1,4-diaminobutane, 1,5-diaminopentane, succinic acid, polyhydroxyalkanoates, and polylactic acid.

Professor Sang Yup Lee said: "Bio-based production of chemicals and materials will play an increasingly important role in establishing a sustainable world. To make the bioprocess efficient and economically competitive, it is essential to improve the performance of microorganisms through systems metabolic engineering.

"From industrial solvents to plastics, an increasing number of products of everyday use will be produced through bioprocesses."

A photograph of a transmission electron micrograph of metabolically engineered Escherichia coli cells accumulating poly(lactate-co-3hydroxybutyrate) copolymers is available via this dropbox folder.

.


Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Computational Model IDs Potential Pathways to Improve Plant Oil Production
Upton NY (SPX) Oct 10, 2012
Using a computational model they designed to incorporate detailed information about plants' interconnected metabolic processes, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have identified key pathways that appear to "favor" the production of either oils or proteins. he research, now published online in Plant Physiology, may point the way to new strategies t ... read more


BIO FUEL
Which Biofuels Hold the Most Promise for the Future

Palm Oil Massive Source of Carbon Dioxide

Super-microbes engineered to solve world environmental problems

Computational Model IDs Potential Pathways to Improve Plant Oil Production

BIO FUEL
Worldwide patent for a Spanish stroke rehabilitation robot

Robot artist learns masters' brush strokes

Toyota unveils robot helping hand

Researchers Examine How Characteristics of Automated Voice Systems Affect Users' Experience

BIO FUEL
DNV KEMA awarded framework agreement for German wind project developer SoWiTec

Sandia Labs benchmark helps wind industry measure success

Bigger wind turbines make greener electricity

EU wind power capacity reaches 100GW

BIO FUEL
Tycoon offers Chinese cars for Japanese amid row

China's September auto sales fall on Japan row

Japan's Toyota to recall 7.43 mn vehicles globally

GM says China auto sales hit record in September

BIO FUEL
AllCell Granted U.S. Patent to Prevent Thermal Runaway Propagation in Li-ion Batteries

Japan, India to study LNG pricing

The Best of Both Catalytic Worlds

Morocco seeks to be green energy leader

BIO FUEL
Swedish minister summons officials after nuke arrests

Judge to hear activists after nuclear hide-and-seek at Swedish plant

Nuclear hide-and-seek: Activists undiscovered at Swedish plant

UAE may join Turkey nuclear power plant project: minister

BIO FUEL
Global Renewable Energy Investments Continue to Grow

Greener industries grow faster than the overall economy

Regulator: Britain faces power shortages

Money: A New (Decentralized) Shade of Green

BIO FUEL
Study finds nearly 50% of retail firewood infested with insects

Northern conifers youngest of the species

Climate change cripples forests

Semi-dwarf trees may enable a green revolution for some forest crop




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement