Subscribe free to our newsletters via your
. Solar Energy News .




NANO TECH
'Super-resolution' microscope possible for nanostructures
by Emil Venere for Purdue University
West Lafayette IN (SPX) May 03, 2013


A new type of super-resolution optical microscopy takes a high-resolution image (at right) of graphite "nanoplatelets" about 100 nanometers wide. The imaging system, called saturated transient absorption microscopy, or STAM, uses a trio of laser beams and represents a practical tool for biomedical and nanotechnology research. (Weldon School of Biomedical Engineering, Purdue University).

Researchers have found a way to see synthetic nanostructures and molecules using a new type of super-resolution optical microscopy that does not require fluorescent dyes, representing a practical tool for biomedical and nanotechnology research.

"Super-resolution optical microscopy has opened a new window into the nanoscopic world," said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

Conventional optical microscopes can resolve objects no smaller than about 300 nanometers, or billionths of a meter, a restriction known as the "diffraction limit," which is defined as half the width of the wavelength of light being used to view the specimen. However, researchers want to view molecules such as proteins and lipids, as well as synthetic nanostructures like nanotubes, which are a few nanometers in diameter.

Such a capability could bring advances in a diverse range of disciplines, from medicine to nanoelectronics, Cheng said.

"The diffraction limit represents the fundamental limit of optical imaging resolution," Cheng said. "Stefan Hell at the Max Planck Institute and others have developed super-resolution imaging methods that require fluorescent labels.

"Here, we demonstrate a new scheme for breaking the diffraction limit in optical imaging of non-fluorescent species. Because it is label-free, the signal is directly from the object so that we can learn more about the nanostructure."

Findings are detailed in a research paper that appeared online Sunday (April 28) in the journal Nature Photonics.

The imaging system, called saturated transient absorption microscopy, or STAM, uses a trio of laser beams, including a doughnut-shaped laser beam that selectively illuminates some molecules but not others.

Electrons in the atoms of illuminated molecules are kicked temporarily into a higher energy level and are said to be excited, while the others remain in their "ground state." Images are generated using a laser called a probe to compare the contrast between the excited and ground-state molecules.

The researchers demonstrated the technique, taking images of graphite "nanoplatelets" about 100 nanometers wide.

"It's a proof of concept and has great potential for the study of nanomaterials, both natural and synthetic," Cheng said.

The doughnut-shaped laser excitation technique, invented by researcher Stefan Hell, makes it possible to focus on yet smaller objects. Researchers hope to improve the imaging system to see objects about 10 nanometers in diameter, or about 30 times smaller than possible using conventional optical microscopes.

"We are not there yet, but a few schemes can be applied to further increase the resolution of our system," Cheng said.

The paper was co-authored by biomedical engineering doctoral student Pu Wang; research scientist Mikhail N. Slipchenko; mechanical engineering doctoral student James Mitchell; Chen Yang, an assistant professor of physical chemistry at Purdue; Eric O. Potma, an associate professor of chemistry at the University of California, Irvine; Xianfan Xu, Purdue's James J. and Carol L. Shuttleworth Professor of Mechanical Engineering; and Cheng.

Future research may include work to use lasers with shorter wavelengths of light. Because the wavelengths are shorter, the doughnut hole is smaller, possibly allowing researchers to focus on smaller objects.

.


Related Links
Department of Chemistry for
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Scientists reach the ultimate goal - controlling chirality in carbon nanotubes
Helsinki, Finland (SPX) May 03, 2013
An ultimate goal in the field of carbon nanotube research is to synthesise single-walled carbon nanotubes (SWNTs) with controlled chiralities. Twenty years after the discovery of SWNTs, scientists from Aalto University in Finland, A.M. Prokhorov General Physics Institute RAS in Russia and the Center for Electron Nanoscopy of Technical University of Denmark (DTU) have managed to control chirality ... read more


NANO TECH
Recipe for Low-Cost, Biomass-Derived Catalyst for Hydrogen Production

China conducts its first successful bio-fueled airline flight

Bugs produce diesel on demand

New input system for biogas systems

NANO TECH
NASA Rover Prototype Set to Explore Greenland Ice Sheet

How Would You Like Your Assistant - Human or Robotic?

Research suggests people willing to interact with more 'smart' objects

Robot-building helps Canadian kids develop skills for high-tech world

NANO TECH
Scotland approves 640-foot prototype offshore wind turbine

Wind Power: TUV Rheinland Certifies HybridDrive from Winergy

Wales wind power line to go underground near historic village

UK Ministry of Defense Deems Wind Towers a National Security Threat

NANO TECH
Rear seat design - a priority for children's safety in cars

GM pulls 'offensive' China ad: report

GM joins call for US action on climate change

Honda's annual net profit soars to $3.7 bn

NANO TECH
Potential of best practice to reduce impacts from oil and gas projects in the Amazon

Researchers find that some 'green' hot water systems fail to deliver on promises

Wales tidal energy energy project nabs $2.9 million in EU funding

East Africa's 'embarrassment of riches' in energy

NANO TECH
Japan, Turkey sign $22-bn nuclear deal

Japan signs nuclear cooperation deal with UAE

Japanese-French led group to build Turkish nuclear plant

Texas A and M Physicist Sees Energy Solutions in Green Nuclear Power Technology

NANO TECH
Environmental Labels May Discourage Conservatives from Buying Energy-Efficient Products

Ethiopia and China sign $1 billion power deal

New York approves power line from Canada

$674 billion annual spend on 'unburnable' fossil fuel assets signals failure to recognise huge financial risks

NANO TECH
Mekong forest facing sharp decline: WWF

Deforestation threatens Mekong region

Smoke signals: How burning plants tell seeds to rise from the ashes

In the Northeast, forests with entirely native flora are not the norm




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement