Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Layered 2D crystals might enable superconductors at high temps
by Staff Writers
San Diego CA (SPX) Jul 29, 2014


Illustration only.

An elusive state of matter called superconductivity could be realized in stacks of sheetlike crystals just a few atoms thick, a trio of physicists has determined.

Superconductivity, the flow of electrical current without resistance, is usually found in materials chilled to the most frigid temperatures, which is impractical for most applications. It's been observed at higher temperatures-higher being about 100 kelvin or minus 280 degrees below zero Fahrenheit-in copper oxide materials called cuprate superconductors. But those materials are brittle and unsuitable for fabricating devices like circuits.

In a paper published in Nature Communications, Michael Fogler and Leonid Butov, professors of physics at the University of California, San Diego, and Konstantin Novoselov, Nobel laureate in physics and professor at the University of Manchester, propose a design for an artificially structured material that should support superconductivity at temperatures rivaling those seen for cuprates.

They considered a material made by interleaving two different types of crystal, one a semiconductor compound and the other a type of insulator. Two one-atom thick layers of the semiconductor compound molybdenum disulfide would be separated by a few-atom thick spacer made of boron nitride, and surrounded by additional boron nitride cladding.

This sets up a situation in which electrons and "holes" left by a missing electrons would accumulate in separate layers of the semiconductor compound in response to an electrical field. And yet these separated electrons and holes would be bound, at a distance, in states called indirect excitons.

These indirect excitons would form a gas with vanishing viscosity. That is, below a certain temperature, the gas would become superfluid. The physicists determined that superfluidity of indirect excitons would set up countercurrents that would not dissipate, a phenomenon called counterflow superconductivity.

Superfluidity and superconductivity are macroscopic manifestations of quantum phenomena, which are usually seen at the smallest physical scales.

The proposed design is an initial blueprint, the authors write. Their analysis reveals a general principle for creating "coherent states" like superfluidity and superconductivity that would emerge in similar materials created with layers of other semiconductor compounds such as tungsten disulfide or tungsten diselenide as well.

Such van der Waals structures are the subject of many investigations; this new analysis demonstrates that they also provide a new platform for exploring fundamental quantum phenomena.

Practical uses are possible as well; these materials could be used to develop electronic and optoelectronic circuits.

.


Related Links
University of California - San Diego
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Moore's Law Gets Boost With Fundamental Chemistry Finding
Berkeley CA (SPX) Jul 16, 2014
Over the years, computer chips have gotten smaller thanks to advances in materials science and manufacturing technologies. This march of progress, the doubling of transistors on a microprocessor roughly every two years, is called Moore's Law. But there's one component of the chip-making process in need of an overhaul if Moore's law is to continue: the chemical mixture called photoresist. Similar ... read more


CHIP TECH
Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

German laws make biogas a bad bet, RWE Innogy says

U.S. looking for ways to make biofuels cheaper

CHIP TECH
Japanese leader proposes first-ever 'Robot Olympics'

This time for the PLA: Chinese army shows off dancing robots

Wake up, robot

Medical advances turn science fiction into science fact

CHIP TECH
Portuguese consortium to spend $300 million on wind

Fires are a major cause of wind farm failure

Marine life thrives around offshore wind farms

DNV GL Increase Quality Of Rotor Blades Made In China

CHIP TECH
Ride-share service Lyft reaches deal with New York

Nissan quarterly profit soars on strong China demand

Really smart cars are ready to take the wheel

Using LED lighting to reduce streetlight glare

CHIP TECH
Improving the cost and efficiency of renewable energy storage

Rutgers Chemists Develop Clean-Burning Hydrogen Fuel

3-D nanostructure could benefit gas storage

Labs characterize carbon for batteries

CHIP TECH
Japanese get anti-radiation pills ahead of nuclear restart

China, Canada to build two nuclear reactors in Romania

Fukushima Accident Underscores Need to Act on Nuclear Plant Hazards

A noble gas cage

CHIP TECH
EU sets new energy savings target at 30%

Canada lobs economic shot across Russian energy bow

U.S. ranks 13th among 16 economies in energy efficiency

Germany most energy efficient nation: study

CHIP TECH
Borneo deforested 30 percent over past 40 years

Reducing Travel Assisted Firewood Insect Spread

Walmart store planned for endangered Florida forest

Hunting gives deer-damaged forests a shot at recovery




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.