Subscribe free to our newsletters via your
. Solar Energy News .




ENERGY TECH
Superlens Extends Range of Wireless Power Transfer
by Staff Writers
Durham NC (SPX) Jan 16, 2014


Each side of each constituent cube of the "superlens" is set with a long, spiraling copper coil. The end of each coil is connected to its twin on the reverse side of the wall. Image courtesy of Guy Lipworth, graduate student researcher at Duke University.

Inventor Nikola Tesla imagined the technology to transmit energy through thin air almost a century ago, but experimental attempts at the feat have so far resulted in cumbersome devices that only work over very small distances. But now, Duke University researchers have demonstrated the feasibility of wireless power transfer using low-frequency magnetic fields over distances much larger than the size of the transmitter and receiver.

The advance comes from a team of researchers in Duke's Pratt School of Engineering, who used metamaterials to create a "superlens" that focuses magnetic fields. The superlens translates the magnetic field emanating from one power coil onto its twin nearly a foot away, inducing an electric current in the receiving coil.

The experiment was the first time such a scheme has successfully sent power safely and efficiently through the air with an efficiency many times greater than what could be achieved with the same setup minus the superlens.

The results, an outcome of a partnership with the Toyota Research Institute of North America, appear online in Nature Scientific Reports on Jan. 10.

"For the first time we have demonstrated that the efficiency of magneto-inductive wireless power transfer can be enhanced over distances many times larger than the size of the receiver and transmitter," said Yaroslav Urzhumov, assistant research professor of electrical and computer engineering at Duke University. "This is important because if this technology is to become a part of everyday life, it must conform to the dimensions of today's pocket-sized mobile electronics."

In the experiment, Yaroslav and the joint Duke-Toyota team created a square superlens, which looks like a few dozen giant Rubik's cubes stacked together. Both the exterior and interior walls of the hollow blocks are intricately etched with a spiraling copper wire reminiscent of a microchip. The geometry of the coils and their repetitive nature form a metamaterial that interacts with magnetic fields in such a way that the fields are transmitted and confined into a narrow cone in which the power intensity is much higher.

On one side of the superlens, the researchers placed a small copper coil with an alternating electric current running through it, which creates a magnetic field around the coil. That field, however, drops in intensity and power transfer efficiency extremely quickly, the further away it gets.

"If your electromagnet is one inch in diameter, you get almost no power just three inches away," said Urzhumov. "You only get about 0.1 percent of what's inside the coil." But with the superlens in place, he explained, the magnetic field is focused nearly a foot away with enough strength to induce noticeable electric current in an identically sized receiver coil.

Urzhumov noted that metamaterial-enhanced wireless power demonstrations have been made before at a research laboratory of Mitsubishi Electric, but with one important caveat: the distance the power was transmitted was roughly the same as the diameter of the power coils. In such a setup, the coils would have to be quite large to work over any appreciable distance.

"It's actually easy to increase the power transfer distance by simply increasing the size of the coils," explained Urzhumov. "That quickly becomes impractical, because of space limitations in any realistic scenario. We want to be able to use small-size sources and/or receivers, and that's what the superlens enables us to do."

Another trivial way to increase the power in the wireless receiver is, of course, to simply crank up the power. While this is practical to an extent, at high enough powers the fields would start trying to yank the watch off of your wrist. Despite this limitation, however, Urzhumov said that magnetic fields have distinct advantages over the use of electric fields for wireless power transfer.

"Most materials don't absorb magnetic fields very much, making them much safer than electric fields," he said. "In fact, the FCC approves the use of 3-Tesla magnetic fields for medical imaging, which are absolutely enormous relative to what we might need for powering consumer electronics. The technology is being designed with this increased safety in mind."

Going forward, Urzhumov wants to drastically upgrade the system to make it more suitable for realistic power transfer scenarios, such as charging mobile devices as they move around in a room. He plans to build a dynamically tunable superlens, which can control the direction of its focused power cone.

"It's actually easy to increase the power transfer distance by simply increasing the size of the coils," explained Urzhumov. "That quickly becomes impractical, because of space limitations in any realistic scenario. We want to be able to use small-size sources and/or receivers, and that's what the superlens enables us to do."

Another trivial way to increase the power in the wireless receiver is, of course, to simply crank up the power. While this is practical to an extent, at high enough powers the fields would start trying to yank the watch off of your wrist. Despite this limitation, however, Urzhumov said that magnetic fields have distinct advantages over the use of electric fields for wireless power transfer.

"Most materials don't absorb magnetic fields very much, making them much safer than electric fields," he said. "In fact, the FCC approves the use of 3-Tesla magnetic fields for medical imaging, which are absolutely enormous relative to what we might need for powering consumer electronics. The technology is being designed with this increased safety in mind."

Going forward, Urzhumov wants to drastically upgrade the system to make it more suitable for realistic power transfer scenarios, such as charging mobile devices as they move around in a room. He plans to build a dynamically tunable superlens, which can control the direction of its focused power cone.

"The true functionality that consumers want and expect from a useful wireless power system is the ability to charge a device wherever it is - not simply to charge it without a cable," said Urzhumov. "Previous commercial products like the PowerMat have not become a standard solution exactly for that reason; they lock the user to a certain area or region where transmission works, which, in effect, puts invisible strings on the device and hence on the user. It is those strings - not just the wires - that we want to get rid of."

If successful, the usable volume of "power hot spots" should be substantially expanded. It may not be easy, however, to maintain the efficiency of the power beam as it gets steered to a high degree. But that is a challenge that Urzhumov and his colleagues look forward to dealing with.

"Magnetic Metamaterial Superlens for Increased Range Wireless Power Transfer," Lipworth, L., Ensworth, J., Seetharam, K., Huang, D., Lee, J.S., Schmalenberg, P., Nomura, T., Reynolds, M.S., Smith, D.R., and Urzhumov, Y. Nature, 2013.

.


Related Links
Duke University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Set-Top Box Energy Conservation Agreement Reached
Washington DC (SPX) Dec 24, 2013
The U.S. Energy Department, the Natural Resources Defense Council (NRDC), the American Council for an Energy-Efficient Economy (ACEEE), the Appliance Standards Awareness Project (ASAP), the Consumer Electronics Association (CEA) and the National Cable and Telecommunications Association (NCTA) announced non-regulatory energy efficiency standards for pay-TV set-top boxes that will result in signif ... read more


ENERGY TECH
NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme

More to biofuel production than yield

Inexpensive technique could drive down costs of biofuel production

York scientists' significant step forward in biofuels quest

ENERGY TECH
Robots invade consumer market for play, work

Electronic 'mother' watches over home

Wall-Crawling Gecko Robots Can Stick In Space Too

Geckos in space: Novel robot takes a step to cosmos

ENERGY TECH
German wind farm operator Prokon warns of imminent insolvency

China to Power Ahead as Wind Turbine Rotor Blade Market Leader for Foreseeable Future

Wind Turbines Begin Providing Renewable Energy at Honda Transmission Plant in Ohio

No Evidence of Residential Property Impacts Near Wind Turbines

ENERGY TECH
Battery development may extend range of electric cars

Volvo Cars says it switched back into profit in 2013

EU cuts CO2 emissions for vans by 28%

The car of the future, today

ENERGY TECH
Fusion instabilities lessened by unexpected effect

Organic mega flow battery promises breakthrough for renewable energy

Violence Threatens to Thwart Iraqi Oil Resurgence

Acid mine drainage reduces radioactivity in fracking waste

ENERGY TECH
TEPCO to siphon off radioactive water from tunnels under Fukushima plant

India and South Korea to cooperate on nuclear power?

Japan approves TEPCO business plan to switch on reactors

Japan's Toshiba to buy 60% stake in British nuclear firm

ENERGY TECH
US power plant emissions down

Li's Power Assets to spin off HK unit

Obama sets up quadrennial review of U.S. energy strategy

US energy secretary delays India trip amid row

ENERGY TECH
Microbe community changes may reduce Amazon's ability to lock up carbon dioxide

Iconic Australasian trees found as fossils in South America

Climate scientists bark up the big tree

Long-term overstory and understory change following logging and fire exclusion in a Sierra Nevada mixed-conifer forest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement