Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
Supernova Caught in the Act by Palomar Transient Factory
by Cynthia Eller Caltech News
Pasadena CA (SPX) May 27, 2014


A star in a distant galaxy explodes as a supernova: while observing a galaxy known as UGC 9379 (left; image from the Sloan digital Sky Survey; SDSS) located about 350 million light years away from us, the team discovered a new source of bright blue light (right, marked with an arrow; image from the 60" robotic telescope at Palomar Observatory). This white-hot young supernova marked the explosive death of a massive star in that distant galaxy. Image courtesy Avishay Gel-Yam.

Supernovae-stellar explosions-are incredibly energetic, dynamic events. It is easy to imagine that they are uncommon, but the universe is a big place and supernovae are actually fairly routine.

The problem with observing supernovae is knowing just when and where one is occurring and being able to point a world-class telescope at it in the hours immediately afterward, when precious data about the supernova's progenitor star is available. Fortunately the intermediate Palomar Transient Factory (iPTF) operated by Caltech scans the sky constantly in search of dramatic astrophysical events. In 2013, it caught a star in the act of exploding.

The iPTF is a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain. It has been scanning the sky since February 2013. The iPTF (and its predecessor experiment, the Palomar Transient Factory [PTF], which operated between 2009 and 2012) regularly observes a wide swath of the night sky looking for astronomical objects that are moving and developing quickly, such as comets, asteroids, gamma-ray bursts, and supernovae.

Both the earlier PTF and the current iPTF collaborations are led by Shrinivas Kulkarni, the John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science and director of the Caltech Optical Observatories.

Last year the iPTF discovered an object of special interest: a supernova with a spectral signature suggesting that its progenitor star was a Wolf-Rayet star. Massive stars are typically structured like an onion, with the heaviest elements in the core, while lighter elements are layered over them and then frosted, if you will, by a layer of hydrogen gas on the stellar surface.

Wolf-Rayet stars, which are unusually large and hot, are exceptions to this rule, being relatively deficient in hydrogen and characterized by strong stellar winds. Astronomers have long wondered if Wolf-Rayet stars are the progenitors of certain types of supernovae, and according to a recent paper published in Nature this is just what the iPTF found in May 2013.

This supernova, SN2013cu, was picked up on a routine sky scan by the iPTF. The on-duty iPTF team member in Israel promptly sounded an alert, asking colleagues at the W. M. Keck Observatory on Mauna Kea to take a spectral image of the supernova before the sun rose in Hawaii.

When supernovae explode, they briefly ionize the sky immediately around them. The ionized materials rapidly recombine, producing unique spectral features that enable astronomers to get a full picture of the ambient material of a supernova event.

This process lasts from minutes to a few days and hence is called a "flash spectrum" of the event. Flash spectrography is a novel observational method developed by Avishay Gal-Yam of the Weizmann Institute of Science in Israel, leader of the team that published the Nature paper.

In the case of SN2013cu, the flash spectrum showed relatively less hydrogen and relatively more nitrogen, suggesting that perhaps the progenitor of the supernova was a nitrogen-rich Wolf-Rayet star. This finding will enable astronomers to better understand the evolution of massive stars and identify potential progenitors of supernovae.

"I could not believe my eyes when I saw those high-ionization features perfectly matching emission lines from a Wolf-Rayet star," says Yi Cao, a graduate student from Caltech who works with Kulkarni.

"Our software pipeline efforts were paying off. Now we are working even harder so that we can get flash spectra of many more supernova flavors to probe their progenitor stars."

Above all, the observation of SN2013cu highlights the success of the intermediate Palomar Transient Factory at catching the universe in the act of doing something interesting, something that might merit a second look.

Though especially intriguing, SN2013cu is only one of over 2,000 supernovae that PTF/iPTF has detected during its four and a half years of observations. As Kulkarni remarks, "I am proud of how the global iPTF network is working together to invent new techniques enabling entirely new science."

Coauthors on the paper, "A Wolf-Rayet-like progenitor of supernova SN 2013cu from spectral observations of a wind," include Kulkarni, Cao, Mansi Kasliwal, Daniel Perley, and Assaf Horesh of Caltech; Gal-Yam, I. Arcavi, E. O. Ofek, S. Ben-Ami, A. De Cia, D. Tal, P. M. Vreeswijk, and O. Yaron of the Weizmann Institute of Science; S. B. Cenko of NASA's Goddard Space Flight Center; J. C. Wheeler and J. M. Silverman of the University of Texas at Austin; F. Taddia and J. Sollerman of Stockholm University; P. E. Nugent of the Lawrence Berkeley National Laboratory; and A. V. Filippenko of UC Berkeley.

.


Related Links
Caltech
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Blowing in the (Stellar) Wind
Rehovot, Israel (SPX) May 23, 2014
When a supernova - the explosion of a distant star - was discovered last year, astrophysicists, with the help of telescopes around the globe, rushed to observe the fireworks. In its dramatic dying flares, this star - a rare type over 10 times the mass of our sun - can tell us something about the life of these fascinating cosmic bodies, as well as helping paint the picture of how all the heavier ... read more


STELLAR CHEMISTRY
New, fossil-fuel-free process makes biodiesel sustainable

NASA's Alternative Fuel Effects Research Showcased

Growing Camelina and Safflower in the Pacific Northwest

Boeing, Embraer team for biofuel use

STELLAR CHEMISTRY
Ultra-fast, the bionic arm can catch objects on the fly

UN talks take aim at 'killer robots'

Exoskeleton to remote-control robot

DARPA-Funded DEKA Arm System Earns FDA Approval

STELLAR CHEMISTRY
Scottish energy sector gets a bit greener with RWE Innogy project

German energy company RWE Innogy starts turbine installation at mega wind project

Irish 'green paper' outlines transition to a low-carbon economy

U.S. moves closer to first-ever offshore wind farm

STELLAR CHEMISTRY
Uber taxi app seeks capital at $12 bn value: report

Business-as-usual model for heavy-duty vehicles in Europe unsustainable

Three-wheel Segway now available

US auto parts maker to outsource interiors to China

STELLAR CHEMISTRY
New lithium battery created in Japan

Stanford, MIT scientists find new way to harness waste heat

Greensmith to integrate 4 battery types in 2014 for over 23mW of storage

NCNR neutrons highlight possible battery candidate

STELLAR CHEMISTRY
AREVA technologies recognize by the US Nuclear Energy Institute

Westinghouse Chosen To Fuel Three Vattenfall Reactors

AREVA to monitor nuclear reactor fluid systems

Fortum drops Areva-Siemens in favour of Rolls-Royce

STELLAR CHEMISTRY
Power plant emissions verified remotely at Four Corners sites

Polar vortex in part to blame for high energy bills, U.S. says

The largest electrical networks are not the best

U.S. has responsibility to act as 'emerging energy superpower,' Upton says

STELLAR CHEMISTRY
International standards reducing insect stowaways in wood packaging material

Canadian forestry firm sues over environmental audit

Emissions From Forests Influence Very First Stage of Cloud Formation

Emerald ash borers were in US long before first detection




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.