Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
Supernova's super dust factory imaged with ALMA
by Staff Writers
Charlottesville VA (SPX) Jan 07, 2014


This artist's illustration of supernova 1987A reveals the cold, inner regions of the exploded star's remnants (in red) where tremendous amounts of dust were detected and imaged by ALMA. This inner region is contrasted with the outer shell (lacy white and blue circles), where the energy from the supernova is colliding with the envelope of gas ejected from the star prior to its powerful detonation. Credit: Credit: Alexandra Angelich (NRAO/AUI/NSF).

Galaxies can be remarkably dusty places and supernovas are thought to be a primary source of that dust, especially in the early Universe. Direct evidence of a supernova's dust-making capabilities, however, has been slim and cannot account for the copious amount of dust detected in young, distant galaxies.

Striking new observations with the Atacama Large Millimeter/submillimeter Array (ALMA) telescope capture, for the first time, the remains of a recent supernova brimming with freshly formed dust. If enough of this dust makes the perilous transition into interstellar space, it could explain how many galaxies acquired their dusty, dusky appearance.

"We have found a remarkably large dust mass concentrated in the central part of the ejecta from a relatively young and nearby supernova," said Remy Indebetouw, an astronomer with the National Radio Astronomy Observatory (NRAO) and the University of Virginia, both in Charlottesville. "This is the first time we've been able to really image where the dust has formed, which is important in understanding the evolution of galaxies."

The results are being reported at the January meeting of the American Astronomical Society (AAS). They also are accepted for publication in the Astrophysical Journal Letters.

An international team of astronomers used ALMA to observe the glowing remains of supernova 1987A, which is in the Large Magellanic Cloud, a dwarf galaxy orbiting the Milky Way approximately 168,000 light-years from Earth. Light from this supernova arrived at Earth in 1987, inspiring its name. This makes 1987A the closest observed supernova explosion since Johannes Kepler's observation of a supernova inside the Milky Way in 1604.

Astronomers predicted that as the gas cooled after the explosion, large amounts of molecules and dust would form as atoms of oxygen, carbon, and silicon bonded together in the cold central regions of the remnant. However, earlier observations of 1987A with infrared telescopes, made within the first 500 days after the explosion, detected only a small amount hot dust.

With ALMA's unprecedented resolution and sensitivity, the research team was able to image the far more abundant cold dust, which glows brightly in millimeter and submillimeter light. The astronomers estimate that the remnant now contains about 25 percent the mass of our Sun in newly formed dust. They also found that significant amounts of carbon monoxide and silicon monoxide have formed.

"1987A is a special place since it hasn't mixed with the surrounding environment, so what we see there was made there," said Indebetouw. "The new ALMA results, which are the first of their kind, reveal a supernova remnant chock full of material that simply did not exist a few decades ago."

Supernovas, however, can both create and destroy dust grains.

As the shockwave from the initial explosion radiated out into space, it produced bright glowing rings of material, as seen in earlier observations with the Hubble Space Telescope. After hitting this envelope of gas, which was sloughed off by the progenitor red giant star as it neared the end of its life, a portion of this powerful explosion rebounded back toward the center of the remnant.

"At some point, this rebound shockwave will slam into these billowing clumps of freshly minted dust," said Indebetouw. "It's likely that some fraction of the dust will be blasted apart at that point. It's hard to predict exactly how much - maybe only a little, possible a half or two thirds."

If a good fraction survives and makes it into interstellar space, it could account for the copious dust astronomers detect in the early Universe.

"Really early galaxies are incredibly dusty and this dust plays a major role in the evolution of galaxies," said Mikako Matsuura with the University College London. "Today we know dust can be created in several ways, but in the early Universe most of it must have come from supernovas. We finally have direct evidence to support that theory."

.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
New Studies Give Strong Boost to Binary-Star Formation Theory
Charlottesville VA (SPX) Jan 01, 2014
Using the new capabilities of the upgraded Karl G. Jansky Very Large Array (VLA), scientists have discovered previously-unseen binary companions to a pair of very young protostars. The discovery gives strong support for one of the competing explanations for how double-star systems form. Astronomers know that about half of all Sun-like stars are members of double or multiple-star systems, b ... read more


STELLAR CHEMISTRY
Inexpensive technique could drive down costs of biofuel production

York scientists' significant step forward in biofuels quest

Seaweed Energy Solutions (SES) acquires wild seaweed operation in Norway

Algae to crude oil: Million-year natural process takes minutes in the lab

STELLAR CHEMISTRY
Robots invade consumer market for play, work

Electronic 'mother' watches over home

Wall-Crawling Gecko Robots Can Stick In Space Too

Geckos in space: Novel robot takes a step to cosmos

STELLAR CHEMISTRY
Researchers Find Ways To Minimize Power Grid Disruptions From Wind Power

Bolivia opens China-built wind power plant

Austria's wind industry laments new zoning restrictions

Wind energy: TUV Rheinland certifies PowerWind wind turbines

STELLAR CHEMISTRY
Electronic valet parks the car, no tip required

Self-driving vehicles offer potential benefits, policy challenges for lawmakers

Three-wheel $6,800 car gears for 2015 US launch

China auto sales up nearly 14% in 2013: industry

STELLAR CHEMISTRY
Shell New Zealand to drill in Great South Basin

Lebanon's prospects of gas bonanza slip further away

Abe to offer help in Africa tour as Ethiopia hopes for trade

India urges Asian unity for fair LNG pricing

STELLAR CHEMISTRY
Czech environment minister cancels nuke waste repository site survey

Greenland and Denmark to agree on uranium in 2014: Danish PM

Japan scientists to create controlled nuclear meltdown

Westinghouse Announces Setting of AP1000 Plant Shield Building Conical Roofs

STELLAR CHEMISTRY
US energy secretary delays India trip amid row

Suburban sprawl cancels carbon footprint savings of dense urban cores

The entropy of nations

United Nations Proclaims "International Year Of Light" In 2015

STELLAR CHEMISTRY
Long-term overstory and understory change following logging and fire exclusion in a Sierra Nevada mixed-conifer forest

Brazil moves to evict invaders from Amazon's Awa lands

Indonesia struggles to clean up corrupt forestry sector

Mangrove forests march up Florida coast as killing frosts decrease




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement