Solar Energy News  
CHIP TECH
Supersonic waves may help electronics beat the heat
by Staff Writers
Oak Ridge TN (SPX) May 22, 2018

Neutron scattering studies of lattice excitations in a fresnoite crystal revealed a way to speed thermal conduction.

Researchers at the Department of Energy's Oak Ridge National Laboratory made the first observations of waves of atomic rearrangements, known as phasons, propagating supersonically through a vibrating crystal lattice - a discovery that may dramatically improve heat transport in insulators and enable new strategies for heat management in future electronics devices.

"The discovery gives you a different way to control the flow of heat," said lead author Michael Manley of the paper published in Nature Communications. "It provides a shortcut through the material - a way to send the energy of pure atomic motion at a speed that's higher than you can with phonons [atomic vibrations]. This shortcut may open possibilities in heat management of nanoscale materials. Imagine the possibility of a thermal circuit breaker, for example."

The scientists used neutron scattering to measure phasons with velocities about 2.8 times and about 4.3 times faster than the natural "speed limits" of longitudinal and transverse acoustic waves, respectively. "We didn't expect them to be going that fast without [fading]," Manley said.

Insulators are necessary in electronic devices to prevent short circuits; but without free electrons, thermal transport is limited to the energy of atomic motion. Hence, understanding the transport of heat by atomic motion in insulators is important.

The researchers scattered neutrons in fresnoite, a crystalline mineral so named because it was first found in Fresno, California. It is promising for sensor applications through its piezoelectric property, which allows it to turn mechanical stress into electrical fields.

Fresnoite has a flexible framework structure that develops a competing order in the structure that does not match the underlying crystal order, like an overlay of mismatched tiles. Phasons are excitations associated with atomic rearrangements in the crystal that change the phase of waves describing the mismatch in the structure.

Phase differences accumulate in a lattice of wrinkles - called solitons. Solitons are solitary waves that propagate with little loss of energy and retain their shape. They can also warp the local environment in a way that allows them to travel faster than sound.

"The soliton is a very deformed region in the crystal where the displacements of the atoms are large and the force-displacement relationship is no longer linear," Manley said. "The material stiffness is locally enhanced within the soliton, leading to a faster energy transfer."

Raffi Sahul of Meggitt Sensing Systems of Irvine, California, grew a single crystal of fresnoite and sent it to ORNL for neutron scattering experiments that Manley conceived to characterize how energy moved through the crystal. "Neutrons are the best way to study this because their wavelengths and energies are in a sense matched to the atomic vibrations," Manley said.

Manley performed measurements with Paul Stonaha, Doug Abernathy and John Budai using time-of-?ight neutron scattering at the Spallation Neutron Source, and with Stonaha, Songxue Chi, and Raphael Hermann using triple-axis neutron scattering at the High Flux Isotope Reactor.

At SNS, the scientists started with a pulsed source of neutrons of different energies and used the ARCS instrument, which selects neutrons in a narrow energy range and scatters them off a sample so detectors can map the energy and momentum transfer over a wide range.

"The large measurement area was important to this study because the features weren't where you would normally expect them to be," said Abernathy. "This gives the neutron measurements a great chance to determine the velocities of the propagating phasons, calculated from the slope of their dispersion curves."

Dispersion is the relationship between the wavelength and the energy that characterizes a propagating wave.

"Once the SNS measurements told us where to look, we used triple-axis spectrometry at HFIR, which provided a constant flux of neutrons, to focus on that one point," Manley said. "A unique thing about Oak Ridge National Laboratory is that we have both a world-class spallation source and a world-class reactor source for neutron research. We can go back and forth between facilities and really get a comprehensive view of things."

Next the researchers will explore other crystals that, like fresnoite, can rotate phasons. Strain applied with an electric field may be able to change the rotation. Changes in temperature may vary properties too.

The title of the paper is "Supersonic propagation of lattice energy by phasons in fresnoite."


Related Links
Oak Ridge National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Dutch firm ASML perfecting 'microchip shrink' for tech giants
Veldhoven, Netherlands (AFP) May 13, 2018
They call it "the shrink" - it's the challenge of how to pack more circuits onto the microchips which power everything from our phones to our computers, even our coffee machines. And pushing the boundaries of this technology is Dutch company ASML, which since its foundation in 1984 has quietly become a world leader in the semiconductor business. "There is more power in your smartphone today than was used to put man on the moon," says ASML's chief operating officer Frederic Schneider-Maunoury, a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Key enzyme for production of second-generation ethanol discovered in Brazilian Amazon

World's strongest bio-material outperforms steel and spider silk

Toward organic fuel cells with forest fuels

Solar powered sea slugs shed light on search for perpetual green energy

CHIP TECH
Robotic assembly of the world's smallest house

Human-sounding Google Assistant sparks ethics questions

Wearable ring, wristband allow users to control smart tech with hand gestures

First robotic system plays tic tac toe to improve task performance

CHIP TECH
European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

German utility E.ON sees renewable sector growth

Germany's E.ON wants even bigger wind footprint

CHIP TECH
How even one automated, connected vehicle can improve safety and save energy in traffic

Tesla chief defends self-driving cars after new crash

Germany orders Porsche recall over diesel emissions cheating

BMW to be first foreign firm to test self-driving car in China

CHIP TECH
Scientists discover how a pinch of salt can improve battery performance

New device could increase battery life of electronics by a hundred-fold

Microwaved plastic increases lithium-sulfur battery lifespan

World's fastest water heater

CHIP TECH
Nuclear Waste Management Organization Signs Co-Operation Agreements With International Partners

Demonstration proves nuclear fission system can provide space exploration power

Framatome and Vattenfall sign contracts for the delivery of fuel assembly reloads

Balancing nuclear and renewable energy

CHIP TECH
Portugal's EDP rejects Chinese takeover offer

New phase of globalization could undermine efforts to reduce CO2 emissions

Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

CHIP TECH
Forest loss in one part of US can harm trees on the opposite coast

India's toy carvers threatened by deforestation

Amazonian rainforests gave birth to the world's most diverse tropical region

Global forests expanding: Reflects wellbeing, not rising CO2, experts say









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.