Solar Energy News  
EARTH OBSERVATION
Taking Animal Magnetism to the Extreme
by Staff Writers
Washington DC (SPX) Mar 21, 2017


An iconic visualization of otherwise invisible magnetic field lines associated with a bar magnet hints of the far weaker biology-based magnetic fields from hearts and brains that DARPA's new AMBIIENT program aims to measure with unprecedented ease. For a larger version of this image please go here.

Each beat of your heart or burst of brain activity relies on tiny electrophysiological currents that generate minuscule ripples in the surrounding magnetic field. These field variations provide the basis for a range of research tools and diagnostic techniques with mouthful names like magnetoencephalography (MEG) and magnetocardiography (MCG).

But tapping into biology's faint magnetic fields requires heroic and costly measures, including high-tech shields to block the larger, potentially confounding magnetic forces all around us and boutique magnetic field sensors that require expensive and cumbersome liquid helium cooling.

DARPA's new Atomic Magnetometer for Biological Imaging In Earth's Native Terrain (AMBIIENT) program is all about ushering magnetic field sensing into a new era in which MEGs, MCGs, and an assortment of other wish-list magnetic field sensing techniques become practical realities for a wide range of applications.

Potentially on the horizon, for example, are sensor systems for detecting spinal signals, diagnosing concussions, and brain-machine interfaces (BMIs) for such uses as controlling prosthetic limbs and external machines via the subtle magnetic signals associated with thought.

A few elephants in the room have been preventing biomagnetic field sensing from extending beyond its current limitations. Planet Earth has been the biggest buzz kill. Its average magnetic field is 50 millionths of a Tesla, a unit of magnetic field strength named after the mid-19th and early-20th century inventor Nikola Tesla. This means that Earth's magnetic field is a million to a billion times stronger than the 10 picoTesla (10-11 Tesla) to 10 femtoTesla (10-14 Tesla) magnetic fields emanating from human bodies.

On top of that, even today's leading-edge magnetic field sensors-based, for example, on Superconducting Quantum Interference Devices (SQUIDs)-suffer from a limited dynamic range, which means they are unable to respond reliably in the presence of magnetic field strengths that span many orders of magnitude, as is the case when biological magnetic fields superimpose upon Earth's own magnetism. Without intense shielding, those magnetic whispers from biology would be lost amidst the blaring din of Earth's magnetism, even with the best available sensors in play.

"Traditionally, measuring small magnetic signals in ambient environments has relied on pairs of high-performance sensors separated by a baseline distance and then measuring the small field-strength differences between the two sensors," said Robert Lutwak, AMBIIENT's program manager in DARPA's Microsystems Technology Office.

"This gradiometric technique has worked well for applications in geophysical surveying and unexploded ordnance detection," Lutwak added, "but due to the combination of the sensors' limited dynamic range and the natural spatial variation of the background signals, this approach falls several orders of magnitude short of being able to detect biological magnetic signals."

The AMBIIENT program is challenging the research community to devise new types of magnetic gradiometers that can detect picoTesla- and femtoTesla magnetic signatures out in the open, without shielding and with whatever the ambient magnetic field environment might be.

To do so will require researchers to, in Lutwak's words, "exploit novel atomic physics techniques and architectures to directly measure extremely tiny gradients in magnetic fields without having to compare the difference between absolute field measurements from two sensors separated along a baseline."

One physics-based approach AMBIIENT performers are likely to pursue is to monitor changes in the polarization or other measureable features of a small laser beam as it passes through vapor cells hosting atoms that respond in laser-beam-altering ways to even femtoTesla magnetic fields. Monitoring changes in the laser light's features would thereby open a novel and practical window on magnetic fields that were previously unmeasurable under ambient conditions.

This opens up scenarios in which, say, a medic on a battlefield would be able to wield a wandlike sensor to quickly screen a warfighter for signs of concussion or other head trauma written in the brain's subtle magnetic fields

"High sensitivity magnetic sensing and imaging will offer a powerful new tool for medical research and clinical diagnosis of neurological and cardiac activity," said Lutwak.

"DARPA's goal is to end up with the capability of high-sensitivity magnetic sensing in a low-cost device that can operate in common environments."

He also envisions some uncommon extensions of magnetic field sensing, including magnetic navigation (MagNav) as a backup, alternative, or supplement to GPS-based navigation. Equipped with the sort of sensors that could emerge from the AMBIIENT program, for example, an aircraft coasting at airliner altitudes might be able to keep track of the naturally varying and well-mapped magnetic field variations at the Earth's surface for determining its over-ground location within about 250 meters.

DARPA will host a Proposers Day in support of the AMBIIENT program from 9:00 AM to 5:00 PM EDT on April 3, 2017, at the DARPA Conference Center in Arlington, VA. Advanced registration is required. More information about the Proposers Day is available in a Special Notice (DARPA-SN-17-27) posted on fbo.gov. The AMBIIENT Broad Agency Announcement (HR001117S0025), which will more fully detail the technical goals and performer requirements, is expected to be released and posted on fbo.gov prior to the Proposers Day.

EARTH OBSERVATION
Glitter helps to monitor ocean waves
Paris (ESA) Mar 21, 2017
The notion of glitter might appear as somewhat frivolous, but scientists are using Sun glitter in images from the Copernicus Sentinel-2 mission to map the motion of the sea surface. Created by wind blowing across the surface, wave patterns are complex and highly varied. Being able to predict their movement can greatly benefit mariners, port and rig builders, coastal farmers and more. ... read more

Related Links
Defense Advanced Research Projects Agency
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Community in chaotic Jakarta goes green to fight eviction

Study IDs link between sugar signaling and regulation of oil production in plants

NASA Study Confirms Biofuels Reduce Jet Engine Pollution

Scientists harness solar power to produce clean hydrogen from biomass

EARTH OBSERVATION
Kraken Sonar Systems gains funding for robotics project

'Tree-on-a-chip' passively pumps water for days

Toward Machines that Improve with Experience

Songs that make robots cry

EARTH OBSERVATION
North Carolina offshore wind hailed as job creator

North Carolina ready for offshore wind energy auction

Flagship English Channel wind farm nears completion

French, Spanish companies set for more wind power off coast of France

EARTH OBSERVATION
China's Geely opens UK plant for electric London taxis

Intel deal may fuel Israel's rise as builder of car brains

Germany pushing e-mobility options

More gas guzzlers due to Trump? Not necessarily

EARTH OBSERVATION
TU Graz researchers show that enzyme function inhibits battery ageing

New gel-like coating beefs up the performance of lithium-sulfur batteries

Non-toxic material that generates electricity through hot and cold

New feedback system could allow greater control over fusion plasma

EARTH OBSERVATION
Loss-hit Toshiba nosedives on fears about future

The EIC and Nuclear AMRC sign MoU

German energy company RWE evolving for success

Potential approach to how radioactive elements could be 'fished out' of nuclear waste

EARTH OBSERVATION
CO2 stable for 3rd year despite global growth: IEA

Emissions flat for three years in a row, IEA says

New research urges a rethink on global energy subsidies

New Zealand lauded for renewables, but challenges remain

EARTH OBSERVATION
Reconsider the impact of trees on water cycles and climate, scientists ask

Late US billionaire's record land gift lays Chile row to rest

Did humans create the Sahara desert?

Louisiana wetlands hurting from accelerated sea level rise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.