![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Bellingham WA (SPX) Sep 08, 2022
The design of efficient solar cells, which harness energy to generate electricity or produce hydrogen by splitting water, has received much attention globally. Another route to harnessing abundant, free solar energy: using it as a pumping source for lasers. High-power lasers are earmarked for several applications, including deep space communication, atmospheric sensing, high-temperature material processing, and hydrogen production. But, they are often expensive and suffer from performance setbacks arising from thermal stress effects. In a recent study published in the SPIE Journal of Photonics for Energy, researchers from Algeria and Portugal report a new solar-powered laser design that successfully addresses these issues. This laser has an improved laser conversion efficiency compared to those pumped with conventional sources (such as flash lamps and LEDs). "The approach we adopted in this study allowed us to develop a powerful solar-powered laser operating in TEM00 mode, the fundamental or lowest-order mode," explains Associate Professor Dawei Liang from Universidade Nova de Lisboa in Portugal, the corresponding author of the study. "Each of these modes (our laser sustains multiple fundamental modes) can be precisely controlled with minimal heat input to the pump cavity. This enables us to tailor the applied energy to the specific needs of an application," he adds. The researchers performed numerical simulations to optimize the design parameters of a TEM00-mode Nd:YAG solar laser beam. Further, they used four laser rods inside four 2V-shaped pump cavities, and pumped them with sunlight using four large off-axis parabolic mirrors with a total collection area of 10 m2. "The laser head in our design also includes four secondary fused-silica aspheric concentrators, and four rectangular fused-silica light guides. This ensures an even distribution of the absorbed pump power within each rod and helps avoid heating damage resulting from thermal lensing and thermal stresses occurring in conventional single rod solar lasers," elaborates Liang. This resulted in an improved performance of the solar laser. The numerical calculations estimated a total laser power of 155.29 watts in the TEM00 mode. This resulted in a two-fold enhancement in the collection efficiency and an improvement of 1.24 times in the conversion efficiency compared to those recorded for earlier designs with similar configuration. One of the major potential applications of this design concerns space-based solar power generation. This involves collection of solar energy in outer space, converting it to a laser beam, and sending it down to Earth where it can be utilized to generate electricity using solar cells. Since this process is not influenced by the Earth atmosphere, it is more stable and requires smaller transmission and receiving equipment than those needed in microwave power transmission. Liang notes that while a photovoltaic-powered diode-pumped laser still has greater solar-to-laser conversion efficiency than that of a solar laser, it is much less suitable for long-term space applications. This is because a diode-pumped laser has a limited diode pump source lifetime and a more complex laser system. A solar-powered laser enjoys far greater system simplicity, and benefits from a nearly eternal and free pump source. Overall, this study lights a way to take solar-powered lasers to new heights, with a clear blueprint for high-efficiency, space-ready solar lasers.
Research Report:Efficient TEM00-mode solar laser using four Nd:YAG rods/four off-axis parabolic mirrors pumping approach
![]() ![]() TrinaTracker adds 55 MW more to its project portfolio in Kenya Eldoret, Kenya (SPX) Sep 08, 2022 TrinaTracker, a global leading tracking solutions provider, completes "Kesses," a 55 MW PV installation located in Eldoret, Uasin Gishu County, Kenya. The project is owned by Alten Energias Renovables and built by Voltalia in partnership with TrinaTracker. The installation includes 103.936 ultra-high-power modules mounted on 928 single-axe Vanguard 2P trackers, with an innovative multi-drive system and a robust design that ensures installation stability during the rainy season, frequently coming w ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |