Solar Energy News  
CHIP TECH
Testing quantum field theory in a quantum simulator
by Staff Writers
Vienna, Austria (SPX) May 26, 2017


These are experiments at TU Wien (Vienna) -- with a quantum chip, controlling a cloud of atoms. Credit TU Wien

What happened right after the beginning of the universe? How can we understand the structure of quantum materials? How does the Higgs-Mechanism work? Such fundamental questions can only be answered using quantum field theories. These theories do not describe particles independently from each other; all particles are seen as a collective field, permeating the whole universe.

But these theories are often hard to test in an experiment. At the Vienna Center for Quantum Science and Technology (VCQ) at TU Wien, researchers have now demonstrated how quantum field theories can be put to the test in new kinds of experiments.

They have created a quantum system consisting of thousands of ultra cold atoms. By keeping them in a magnetic trap on an atom chip, this atom cloud can be used as a "quantum simulator", which yields information about a variety of different physical systems and new insights into some of the most fundamental questions of physics.

Complex Quantum Systems - More than the Sum of their Parts
"Ultra cold atoms open up a door to recreate and study fundamental quantum processes in the lab", says Professor Jorg Schmiedmayer (VCQ, TU Wien). A characteristic feature of such a system is that its parts cannot be studied independently.

The classical systems we know from daily experience are quite different: The trajectories of the balls on a billiard table can be studied separately - the balls only interact when they collide.

"In a highly correlated quantum system such as ours, made of thousands of particles, the complexity is so high that a description in terms of its fundamental constituents is mathematically impossible", says Thomas Schweigler, the first author of the paper. "Instead, we describe the system in terms of collective processes in which many particles take part - similar to waves in a liquid, which are also made up of countless molecules." These collective processes can now be studied in unprecedented detail using the new methods.

Higher Correlations
In high-precision measurements, it turns out that the probability of finding an individual atom is not the same at each point in space - and there are intriguing relationships between the different probabilities.

"When we have a classical gas and we measure two particles at two separate locations, this result does not influence the probability of finding a third particle at a third point in space", says Jorg Schmiedmayer.

"But in quantum physics, there are subtle connections between measurements at different points in space. These correlations tell us about the fundamental laws of nature which determine the behaviour of the atom cloud on a quantum level."

"The so-called correlation functions, which are used to mathematically describe these relationships, are an extremely important tool in theoretical physics to characterize quantum systems", says Professor Jurgen Berges (Institute for Theoretical Physics, Heidelberg University).

But even though they have played an important part in theoretical physics for a long time, these correlations could hardly be measured in experiments. With the help of the new methods developed at TU Wien, this is now changing: "We can study correlations of different orders - up to the tenth order.

This means that we can investigate the relation between simultaneous measurements at ten different points in space", Schmiedmayer explains. "For describing the quantum system, it is very important whether these higher correlations can be represented by correlations of lower order - in this case, they can be neglected at some point - or whether they contain new information."

Quantum Simulators
Using such highly correlated systems like the atom cloud in the magnetic trap, various theories can now be tested in a well-controlled environment. This allows us to gain a deep understanding of the nature of quantum correlations.

This is especially important because quantum correlations play a crucial role in many, seemingly unrelated physics questions: Examples are the peculiar behaviour of the young universe right after the big bang, but also for special new materials, such as the so-called topological insulators.

Important information on such physical systems can be gained by recreating similar conditions in a model system, like the atom clouds. This is the basic idea of quantum simulators: Much like computer simulations, which yield data from which we can learn something about the physical world, a quantum simulation can yield results about a different quantum system that cannot be directly accessed in the lab.

CHIP TECH
Quantum reservoir for microwaves
Lausanne, Switzerland (SPX) May 18, 2017
In a recent experiment at EPFL, a microwave resonator, a circuit that supports electric signals oscillating at a resonance frequency, is coupled to the vibrations of a metallic micro-drum. By actively cooling the mechanical motion close to the lowest energy allowed by quantum mechanics, the micro-drum can be turned into a quantum reservoir - an environment that can shape the states of the ... read more

Related Links
Vienna University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

A full life cycle assessment of second-generation biofuels

Triple play boosting value of renewable fuel could tip market in favor of biomass

Insight into enzyme's 3-D structure could cut biofuel costs

CHIP TECH
AI wins as Google algorithm beats No. 1 Go player

Robots help shed light on how humans walk

Lockheed Martin exoskeleton helps soldiers carry heavy gear

Building a better 'bot': Artificial intelligence helps human groups

CHIP TECH
U.S. states taking up wind energy mantle

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

Scientists track porpoises to assess impact of offshore wind farms

Dutch open 'world's largest offshore' wind farm

CHIP TECH
China scrambles to tame bike chaos

Hong Kong police arrest 21 Uber drivers in sting

Researchers find computer code that Volkswagen used to cheat emissions tests

China's Geely boosts expansion with Proton, Lotus stakes

CHIP TECH
Advancing next-generation Stable, safe, smart, sustainable batteries

New approach to revolutionize the production of molecular hydrogen

Stretching the limits of elastic conductors

Photocatalyst makes hydrogen production 10 times more efficient

CHIP TECH
Swiss vote for gradual nuclear phaseout, energy makeover

Why nuclear could become the next 'fossil' fuel

Hungary: AREVA NP awarded contract for safety IC modernization at Paks Nuclear Power Plant

India to build 10 domestic nuclear power reactors

CHIP TECH
China further opens energy sector to private investment

Australia power grid leased to local-foreign consortium

Poland central to EU energy diversification strategy

Myanmar recovery linked to development of electrical grid

CHIP TECH
Activists protest logging in Poland's ancient forest

Planting trees cannot replace cutting CO2 emissions

In Canada, parks thrive but conservationists cry foul

Myanmar's extensive forests are declining rapidly due to political and economic change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.