Solar Energy News  
The Hibernating Stellar Magnet

The Magnetar-Candidate (Artist's Impression)
by Staff Writers
Paris, France (ESO) Oct 01, 2008
Astronomers have discovered a most bizarre celestial object that emitted 40 visible-light flashes before disappearing again. It is most likely to be a missing link in the family of neutron stars, the first case of an object with an amazingly powerful magnetic field that showed some brief, strong visible-light activity.

This weird object initially misled its discoverers as it showed up as a gamma-ray burst, suggesting the death of a star in the distant Universe.

But soon afterwards, it exhibited some unique behaviour that indicates its origin is much closer to us. After the initial gamma-ray pulse, there was a three-day period of activity during which 40 visible-light flares were observed, followed by a brief near-infrared flaring episode 11 days later, which was recorded by ESO's Very Large Telescope. Then the source became dormant again.

"We are dealing with an object that has been hibernating for decades before entering a brief period of activity", explains Alberto J. Castro-Tirado, lead author of a paper in this week's issue of Nature.

The most likely candidate for this mystery object is a 'magnetar' located in our own Milky Way galaxy, about 15 000 light-years away towards the constellation of Vulpecula, the Fox. Magnetars are young neutron stars with an ultra-strong magnetic field a billion billion times stronger than that of the Earth.

"A magnetar would wipe the information from all credit cards on Earth from a distance halfway to the Moon," says co-author Antonio de Ugarte Postigo. "Magnetars remain quiescent for decades. It is likely that there is a considerable population in the Milky Way, although only about a dozen have been identified."

Some scientists have noted that magnetars should be evolving towards a pleasant retirement as their magnetic fields decay, but no suitable source had been identified up to now as evidence for this evolutionary scheme.

The newly discovered object, known as SWIFT J195509+261406 and showing up initially as a gamma-ray burst (GRB 070610), is the first candidate. The magnetar hypothesis for this object is reinforced by another analysis, based on another set of data, appearing in the same issue of Nature.

The 42 scientists used data taken by eight telescopes worldwide, including the BOOTES-2 robotic telescope at EELM-CSIC, the WATCHER telescope at Boyden Observatory (South Africa), the 0.8-m IAC80 at Teide Observatory (Spain), the Flemish 1.2-m Mercator telescope at Observatorio del Roque de los Muchachos (Spain), the Tautenburg 1.34-m telescope (Germany), the 1.5-m at Observatorio de Sierra Nevada (IAA-CSIC), the 6.0-m BTA in Russia, the 8.2-m VLT at ESO in Chile and the IRAM 30-m Pico Veleta y Plateau de Bure telescopes, together with the SWIFT (NASA) and XMM-Newton (ESA) satellites.

Neutron stars is the bare, condensed remain of a massive star which started its life with between eight and fifteen times the mass of the Sun, but then expelled its outer layers following a supernova explosion. Such stars are only around 20 kilometres in diameter, yet are more massive than the Sun.

Magnetars are neutron stars with magnetic fields hundreds of times more intense than the average neutron star fields. The energy release during one flare in the course of a period of activity can amount to the energy released by the Sun in 10 000 years.

Castro-Tirado A. J. et al. 2008, Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars, Nature, 25 September 2008. A paper by Alex Stefanescu et al. In the same issue of Nature confirms the magnetar hypothesis.

The team is composed of A. J. Castro-Tirado, A. de Ugarte Postigo, J. Gorosabel, M. Jelinek, M. A. Guerrero, F. J. Aceituno, R. Cunniffe, P. Kubanek, S. Vitek (IAA-CSIC, Granada, Spain), T. A. Fatkhullin, V. V. Sokolov, E. Sonbas, S. A. Trushkin, N. N. Bursov, and N. A. Nizhelskij (SAO, Russian Academy of Science), P. Ferrero, D. A. Kann, S. Klose, and S. Schulze (Thuringer Landessternwarte Tautenburg, Germany), D. Sluse (Laboratoire d'Astrophysique, Ecole Polytechnique Federale de Lausanne (EPFL) Switzerland), M. Bremer and J.M.Winters (IRAM, Saint Martin d d'Heres, France), D. Nuernberger (ESO, Santiago, Chile), D. Perez-Ramirez (Universidad de Jaen, Spain and University of Leicester, UK), J. French, G. Melady, L. Hanlon, and B. McBreen (University College Dublin, Ireland), K. Leventis and S. B. Markoff (University of Amsterdam, The Netherlands), S. Leon (IRAM, Granada, Spain), A. Kraus (Max-Planck-Institut fur Radioastronomie, Bonn, Germany), A. C. Wilson (University of Texas, Austin, USA), R. Hudec (Astronomical Institute of the Czech Academy of Sciences), M. Durant, J.M. Gonzalez-Perez, and T. Shahbaz (IAC, La Laguna, Spain), S. Guziy (Nikolaev State University, Ukraine), S. B. Pandey (Aryabhatta Research Institute of Observational-Sciences, India), L. Pavlenko (Crimean Astrophysical Observatory, Ukraine), C. Sanchez-Fernandez (European Space Astronomy Centre, Madrid, Spain), and L. Sabau-Graziati (INTA, Madrid, Spain). Antonio de Ugarte Postigo is now affiliated with ESO, Chile.

Related Links
ESO
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


When It Comes To Galaxies, Diversity Is Everywhere
Baltimore MD (SPX) Oct 01, 2008
There's an old saying in astronomy: "Galaxies are like people. They're only normal until you get to know them." That view is supported by a group of astronomers after using NASA's Hubble Space Telescope to study a large number of galaxies in our cosmic backyard.







  • Strong support for India nuclear deal: US
  • India ends nuclear outcast status with French atomic deal
  • France's Areva eyes deal to supply two reactors to India
  • France and India vow to boost civil nuclear cooperation

  • Carbon Sinks: Issues, Markets, Policy
  • CO2 Scrubber Captures Greenhouse Gases
  • Don't Blame Cities For Climate Change, See Them As Solutions
  • Growth In The Global Carbon Budget

  • Heinz stops buying Chinese milk products
  • Experiment Demonstrates 110 Years Of Sustainable Agriculture
  • Advance Offers Revolution In Food Safety Testing
  • Cadbury recalls China-made sweets from Hong Kong, Australia

  • New Meat-Eating Dinosaur From Argentina Had Bird-Like Breathing System
  • Researchers Study Acoustic Communication In Deep-Sea Fish
  • Researchers Find Animal With Ability To Survive Climate Change
  • Formula Discovered For Longer Plant Life

  • Iran To Conduct First Satellite Launch Soon
  • Outside View: Reusable rocket breakthrough
  • Grant For Eco-Friendly Rocket Engine
  • College Students Develop Rocket Motors In Tamil Nadu

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • Students And Astronauts Use Powerful New Tool To Explore Earth From Space
  • Raytheon Completes Ground Segment Acceptance Testing For NPOESS
  • NRL HICO-RAIDS Experiments Ready For Payload Integration
  • Infoterra Adds High Resolution City Datasets

  • New Research Shows Why Metal Alloys Degrade
  • Microsoft courts Chinese consumers with slashed software price
  • Oracle, HP unveil computer to cope with digital explosion
  • Study Spotlights Anti-satellite And Space Debris Threats

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement