Solar Energy News  
MARSDAILY
The Martian Astrobiologist
by Staff Writers for Astrobiology Magazine
Moffett Field CA (SPX) Oct 21, 2015


(1) The fictional Ares 3 landing site in southern Acidalia Planitia. (2) Carl Sagan Memorial Station (Landing site of the NASA Pathfinder mission) (3) Marwth Vallis (4) Meridiani Planum and the site of NASA's Opportunity rover (5) Schiaparelli crater. Image courtesy NASA Astrobiology. For a larger version of this image please go here.

Mars has been a focus of astrobiology and exobiology research since the early days of NASA. Even before the invention of the telescope, Mars captured the imagination of scientists and philosophers who were interested in life's potential beyond Earth.

With the Viking landers in the 1970s, Mars became the target of NASA's first dedicated mission to search for life in our solar system. Ever since, further robotic missions have expanded our knowledge of Mars, revealing many sites on the surface that could hold evidence of past or present life.

Humans have yet to make the journey, but the desire to send teams of researchers to visit scientific sites on Mars has been a driving force for space exploration. The question of life on Mars is so compelling that artists, writers and some of humankind's greatest thinkers have been exploring the possibility through fiction for centuries. Recent weeks have showcased two big news stories about Mars that capture both our scientific and fictional fascinations with the red planet.

On September 28th, 2015, NASA announced evidence that liquid water does exist on Mars today. Liquid water is one of the key ingredients for life as we know it, and its presence on Mars raises hopes that we may soon discover the first known living organisms native to a planet other than Earth. Days later, a new Hollywood epic, The Martian, arrived in theatres.

The Martian, based on the novel by Andy Weir, follows the story an astronaut stranded on Mars after harrowing circumstances force his colleagues to abort their mission. Although fictional, the story takes place in the near future and finds inspiration in real-life work performed by NASA and other institutions around the world. NASA is already developing technologies that appear in the film, and the Astrobiology Program has been studying many of the sites on Mars that feature on the big screen.

In The Martian, astronaut Mark Watney undergoes an epic journey as he struggles to survive after being left alone on Mars. He draws on his skills as a botanist and mechanical engineer to overcome many obstacles that the harsh martian environment throws at him. However, if Mark Watney had been an astrobiologists, and survival wasn't his first priority, there are many detours he could have taken along his route to perform some spectacular scientific investigations.

To check out some of the sites, a great place to start is NASA's online tool Mars Trek. Mars Trek is a web-based application that allows anyone to explore high-quality visualizations of Mars using 50 years of data from NASA missions and other institutions.

The Journey
Watney begins at the fictional landing site of the Ares 3 mission, placed at the southern reaches of Mars' Acidalia Planitia. From here, he travels south to the real-life site of NASA's Pathfinder mission and the Sojourner rover. His path eventually takes him all the way across Mawrth Vallis in an attempt to reach Schiaparelli Crater. With a little more time (and a lot more resources), Watney could have made some incredible observations along the way that would have greatly advanced our understanding of life's potential on Mars.

What follows is just a small snapshot of some of the astrobiological sites on Mars that Watney could have taken in if his journey had been a little less desperate. The truth is, any samples he could have collected, or experiments performed, would be spectacular. This is just a snapshot of some real-life highlights along his fictional route.

Acidalia Planitia
Acidalia Planitia is a huge area on Mars, centered at 49.8 N 339.3 E, and sits northeast of the famous Valles Marineris. In the story, Watney touches down in a region of wind-blown deposits and weathered craters at the southern reaches of Acidalia Planatia, just 800 kilometers north of the actual site of the 1997 Pathfinder landing site (now designated Carl Sagan Memorial Station).

Because Acidalia Planatia is such a large region, there are many sites of interest to astrobiology here. At the far north of Acidalia Planatia is an area dotted with geological structures that could be the ancient remnants of mud volcanoes, where wet mud would have been belched out to the martian surface from underground. Some scientists believe that this would be a good place to search for biosignatures of ancient life on Mars, but it would actually be a long trek for Watney to undertake from Ares 3. Instead, Watney turned south toward Pathfinder.

Pathfinder
NASA's Pathfinder mission delivered a lander and rover to a region known as Ares Vallis on Mars. The choice of landing site was no mistake. Ares Vallis is what is known as an outflow channel, and it may have been formed by liquid water flowing out of a region of hills to the south known as Margaritifer Terra. The water would have flowed from the hills and through the Xanthe Highlands, ending in a feature called Chryse Planitia, which bears a striking resemblance to deltas on Earth.

There is evidence of past water erosion in Chryse Planitia, which may have also received outflows of water from Valles Marineris. This site would be an interesting place for an astrobiologist to explore because any environment where liquid water was once present might contain clues about past habitability on Mars, or even biosignatures of ancient life. It's a shame that Watney didn't have the resources to carry samples from the Pathfinder site for further study.

Marwth Vallis
Watney's next major journey takes him from Ares 3 across Marwth Vallis, a region with a plethora of sites that could have easily distracted him from his survival mission had he been trained as an astrobiologist. Marwth Vallis was a finalist in the selection of landing sites for NASA's Mars Science Laboratory (MSL) mission and its Curiosity rover.

In the end, Curiosity landed halfway around the planet at Gale Crater in 2012, far away from Watney's path. But before the mission launched, Marwth Vallis was under scrutiny due to the fact that it contains the best-known exposure of clay minerals at the surface of Mars. On Earth, clays form in wet environments and their location on Mars is a good sign that a watery environment was once present. Clays also trap organics, molecules essential for life as we know it.

For more about Marwth Vallis and the interesting features is contains, check out the discussions from the 4th MSL Landing Site Workshop in 2010 from the American Geophysical Union (AGU)

Meridiani
After his treacherous journey through Marwth Vallis, Watney turns south into Meridiani Planum, the landing site of NASA's Mars Exploration Rover (MER) Opportunity. Even in the story, Watney is tempted to head just a bit further south to search for Opportunity. If he had been an astrobiologists, he probably wouldn't have been able to resist the temptation.

Merdiani Planum was selected after rigorous study as Opportunity's landing site because of its high scientific value. For astrobiology, the main draw is evidence that liquid water was once present in the area. Meridiani has an ancient layer of a mineral known as hematite. Hematite is an iron oxide, and wet environments are often a key to its formation on Earth. There are ways in which hematite can form without water, but its presence in Meridiani was a big draw for team behind the MER rovers.

Opportunity confirmed many scientists' suspicions about Meridiani, providing compelling evidence for a wet environment on ancient Mars.

At the rim of Endeavor Crater, Opportunity uncovered clays that were older than the impact event that formed the crater itself. They are the oldest rocks that Opportunity has examined thus far, and they could have formed in waters that were habitable for life. The findings also suggest that the water might have persisted for long periods of time. Grabbing a sample from these rocks would be a high priority for any wandering astrobiologist.

Opportunity also spotted a few meteorites on Meridiani Planum, and studying these rocks from space could help astrobiologists understand whether or not the ingredients for life's origins could have been delivered to Mars when the planet was warmer and wetter.

An astrobiologist on Mars would have a field day exploring all of the interesting sites that Opportunity has uncovered during its incredible decade-long journey on Mars (1).

Schiaparelli crater
Watney's end goal as he heads across Meridiani Planum is to reach Shiaparellicrater. Shiaparelli is a relatively large crater some 460 kilometers in diameter. If Watney's fictional journey had been focused on astrobiology, this would still be a great destination for a visit.

Outcrops of ancient rock could be present on Shiaparelli's floor, and the rim of the crater itself also provides access to rocks that cover a long period of Mars' geological history. There is even evidence that sedimentary deposits in the crater could have been left behind by flowing water.

The biggest draw of Shiaparelli, however, is the presence of hydrated minerals. The European Space Agency's (ESA) Mars Express mission has sent back images of deposits inside Shiaparelli that are similar to those found when lakes on Earth evaporate. This has led some to theorize that a martian lake once filled parts of the crater. These deposits of hydrated minerals rest near the surface, and would be an excellent place for astrobiologists to explore.

Alternate Routes
If Watney had chosen an alternate route to Schiaparelli, via Ares Vallis, he could have also hit a few more sites of interest. After grabbing plenty of samples from Ares Vallis itself, he would have reached Firsoff crater.

Firsoff crater is one of the sites being considered for NASA's upcoming Mars 2020 rover, and there would be a lot to see here. The University of Arizona's High Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter has provided images of many features around Firsoff crater that would be worth a stop. A detailed map of the points of interest for Mars 2020 can be found here.

The big draw of Firsoff is the presence of Equitorial Layered Deposits (EDL) inside the crater. These mounds of material have been interpreted by some as 'mud volcanoes,' and could have been formed by water upwelling from underground and evaporating (2). The possibility of groundwater rising to the surface raises many questions about whether or not the EDLs would be a good place to search for signs of past or present life.

Another point of interest on this route is Oxia Palus, a site that has been considered for future Mars landings, including the ESA's ExoMars 2018mission. Ancient, clay-rich rocks feature here, and they would definitely be worth a look for any passing astrobiologist.

A Walk on Mars
In The Martian, Watney's journey is focused on his survival. If a real-life astronaut were to touch down at the site of the fictional Ares 3 mission, there are many more areas of interest on Mars that could be reached over a similar distance by a wandering astrobiologist. This includes other candidate sites that were considered for the landing of NASA's Curiosity rover, such as Holden and Eberswalde craters.

NASA is currently developing many technologies that could make human exploration of Mars a reality. For aspiring astrobiologists interested in where they might want to explore if they make it onto a future NASA mission to Mars, check out the Explore Mars Trek here.

References: (1) Knoll et al. (2005) An astrobiological perspective on Meridiani Planum, Earth and Planetary Science Letters 240, 179-189 - (2) Pondrelli et al. (2011) Mud volcanoes in the geologic record of Mars: The case of Firsoff crater, Earth and Planetary Science Letters, 304(3-4), 511-519


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MARSDAILY
You too can learn to farm on Mars
Pullman WA (SPX) Oct 21, 2015
Scientists at Washington State University and the University of Idaho are helping students figure out how to farm on Mars, much like astronaut Mark Watney, played by Matt Damon, attempts in the critically acclaimed movie "The Martian." Washington State University physicist Michael Allen and University of Idaho food scientist Helen Joyner teamed up to explore the challenge. Their five-page ... read more


MARSDAILY
New UT study highlights environmental, economic shortcomings of federal biofuel laws

Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

Researchers create inside-out plants to watch how cellulose forms

MARSDAILY
Google invests in Chinese artificial intelligence firm

Friendly robot Pepper makes European debut in France

Robots are learning to fall with grace

More-flexible machine learning

MARSDAILY
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

MARSDAILY
Consumer Reports hits reliability of 'best car' Tesla

Uber invests big in China in face of fierce rival

VW examining if another engine has pollution cheating device

Pakistani entrepreneurs launch 'Uber for rickshaws'

MARSDAILY
What are these nanostars in 2-D superconductor supposed to mean

New Battery Storage Software Jump-Starts Marketing and Sales

Saft and Boeing renew satellite battery agreement

With this new universal wireless charger, compatibility won't be an issue

MARSDAILY
China, Britain strike 'historic' nuclear deal

Saudi, Hungary sign nuclear pact

China 'to take one-third stake' in UK nuclear plant

Areva job cuts fuel union security concerns

MARSDAILY
To reach CO2, energy goals, combine technologies with stable policies

EDF for carbon price floor

Shift from fossil fuels risks popping 'carbon bubble': World Bank

DOE selects UC Berkeley to lead US-China energy and water consortium

MARSDAILY
Future coastal climate not cool for redwood forests

New study rings alarm for sugar maple in Adirondacks

Protected and intact forests lost at an alarming rate around the world

Could contaminated land actually be good for trees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.