Solar Energy News  
TIME AND SPACE
The Most Distant Black Hole in the Cosmos
by Staff Writers
Heidelberg, Germany (SPX) Dec 06, 2017


Schematic representation of the look back into history that is possible by the discovery of the most distant quasar yet known. The observation using one of the Magellan telescope (bottom left) allows us to reconstruct information about the so-called reionization epoch ("bubbles" top-half right) that followed the Big Bang (top right).

Astronomers have discovered the most distant quasar known, which is so far from us that its light has taken more than 13 billion years to reach us. We see this quasar as it was a mere 690 million years after the Big Bang, and its light carries valuable information about the early history of the universe, in particular the reionization phase.

At the center of the quasar is a massive black hole with a mass of almost 1 billion solar masses. In addition, the quasar's host galaxy has been found to contain a large amount of gas and dust, challenging models of galactic evolution. The results have now been published in Nature and in the Astrophysical Journal Letters.

Astronomers have discovered the most distant known black hole: a so-called quasar whose light has taken 13 billion years to reach us. In consequence, the light shows that quasar as it was 13 billion years ago, a mere 690 million years after the Big Bang.

The discovery was part of a concerted, multi-year search for ever more distant quasars led by Fabian Walter and Bram Venemans of the Max Planck Institute for Astronomy. It was made by Eduardo Banados, of the Carnegie Institution for Science, using the institution's 6.5-meter Magellan telescopes in Chile.

Quasars are powered by supermassive black holes in the centers of galaxies - in this case, a black hole with almost a billion times the mass of the Sun. Matter such as gas falling onto the black hole will form an ultra-hot accretion disk before falling in, making the whole setup one of the most luminous objects in the universe: a quasar. The newly discovered quasar shines as brightly as 40 trillion Suns.

Distant quasars are valuable sources of information about the early universe. For one, they can be used to "X-ray" the universe over large distances. Quasar light can be decoded to yield information about the hydrogen atoms the light has encountered along its billion-light-year-journey. The light of the newly discovered most distant quasar yet carries crucial information regarding one of the earliest phases of the universe, the so-called reionization phase.

About 380,000 years after the Big Bang, the universe had cooled down sufficiently to form hydrogen atoms. Some hundreds of millions of years later, the energetic ultraviolet radiation of the first stars and the accretion disks of the first black holes reionized nearly all of the hydrogen in the universe, separating the electrons from the hydrogen nuclei (protons).

The timing and specifics of this cosmic reionization are still an open question. Eduardo Banados, lead author of the article describing the discovery, says: "Reionization was the universe's last major transition, and it is one of the current frontiers in astrophysics."

The newly discovered quasar adds a crucial data point: Its light shows that a significant fraction of hydrogen was still neutral 690 million years after the Big Bang. This favours models which predict that reionization happened comparatively late in the history of the universe.

Quasars as young as this one also yield valuable information about galaxy evolution. For instance, at almost a billion solar masses, the quasar's central black hole is comparatively massive. Explaining how such a massive black hole could have formed in such a comparatively short amount of available time is a challenge for models of supermassive black hole formation, and effectively rules out some of those models. Banados says: "Gathering all this mass in fewer than 690 million years is an enormous challenge for theories of supermassive black hole growth."

In an effort led by MPIA's Bram Venemans, the astronomers targeted the quasar with the millimeter telescope NOEMA, operated by IRAM, in the French Alps and the VLA radio telescope array in Socorro, New Mexico. With those observations, the astronomers were able to identify and examine the quasar's host galaxy.

Although the galaxy can be no more than 690 million years old, it has already formed an enormous amount of dust, and heavy chemical elements. This means it must already have formed a large amount of stars. Again, this is a challenge for models, this time for models of galaxy evolution.

Bram Venemans says: "Models of galaxy evolution will need to be able to explain how a galaxy could form the stars needed to produce the observed amounts of dust and heavier chemical elements in such a comparatively short time."

Reionization, black hole evolution, galaxy evolution - even with these first observations, the newly discovered quasar has given astronomers key information about cosmic history. Follow-up observations, as well as a search for similar quasars, are on track to put our picture of early cosmic history onto a solid footing.

* "An 800 Million Solar Mass Black Hole in a Significantly Neutral Universe at Redshift 7.5," Eduardo Banados et al., 2017 Dec. 7, Nature

* "Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy," Bram Venemans et al., 2017, Astrophysical Journal Letters

TIME AND SPACE
ALMA discovers infant stars surprisingly near galaxy's supermassive black hole
Charlottesville VA (SPX) Dec 04, 2017
At the center of our galaxy, in the immediate vicinity of its supermassive black hole, is a region wracked by powerful tidal forces and bathed in intense ultraviolet light and X-ray radiation. These harsh conditions, astronomers surmise, do not favor star formation, especially low-mass stars like our sun. Surprisingly, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) ... read more

Related Links
Max Planck Institute For Astronomy
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Researchers generate electricity from low-cost biomaterial

Breakthrough process for directly converting methane to methanol

Surrey develops new 'supercatalyst' to recycle carbon dioxide and methane

Convert methane to hydrogen without forming carbon dioxide at low-cost

TIME AND SPACE
Amputees can learn to control a robotic arm with their minds

Robot learning improves student engagement

Robots foresee future with automated visualized predictions

Helping hands guide robots as they learn

TIME AND SPACE
U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

New York sets high bar for wind energy

TIME AND SPACE
Hearing hybrid and electric vehicles while quieting noise pollution

London's iconic black cabs go electric

GM recalling 1 million cars in China

GM sees 2019 launch for self-driving taxi fleet

TIME AND SPACE
Superior hydrogen catalyst just grows that way

Army researchers seek better batteries

Musk's record-breaking battery officially launches in Australia

Batteries with better performance and improved safety

TIME AND SPACE
For Gabon's sickly uranium miners, a long quest for compensation

Belarus nuclear power plant stirs fears in Lithuania

Lightbridge and AREVA NP Sign Agreements to Immediately Advance Fuel Development

UK made grave errors over Hinkley nuclear project: MPs

TIME AND SPACE
Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

TIME AND SPACE
NASA Survey Technique Estimates Congo Forest's Carbon

Greenpeace slams Indonesia palm oil industry on deforestation

Amazon's recovery from forest losses limited by climate change

Poland says compliant with EU court order against ancient forest logging









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.