Solar Energy News  
STELLAR CHEMISTRY
The birth of massive stars is accompanied by strong luminosity bursts
by Staff Writers
Vienna, Austria (SPX) Nov 09, 2016


Graphical representation of the model for the birth of massive stars. The density distribution around the resulting star is color-coded. Image courtesy Institut fur Astronomie und Astrophysik; Universitat Tubingen. For a larger version of this image please go here.

The birth of massive stars is still a mystery to us, because these stars are embedded in an extremely dense medium of gas and dust, says Rolf Kuiper, the leader of the Emmy Noether Research Group for Massive Star Formation, funded by the German Research Foundation (DFG).

"This opaque envelope makes it difficult to directly observe the birth process even with modern telescopes. In other words, we see the cradle in which these stars are born, but we can't detect the stars themselves."

Therefore, the researchers modeled the birth process within a numerical simulation. For this ambitious, computationally expensive study they made use of high-performance computers within the bwHPC initiative of the state of Baden-Wurttemberg.

The simulation starts with a cloud of gas and dust, which collapses under its own gravity and eventually forms a so-called accretion disk around the hot young star. The material in such a disk rotates around the central star and slowly transports gas and dust towards it.

For the first time, the resolution of these simulations was sufficient to infer the formation of high-density clumps within the gravitationally unstable disk. Once formed, these clumps start to migrate through the disk and finally sink into the central star.

"Like throwing logs into a fireplace, these episodes of clump consumption produce violent luminosity outbursts outshining the collective effect of one hundred thousand Suns", says Eduard Vorobyov.

A similar process of episodical luminosity bursts was already known with respect to the formation of the first stars in the Universe and for low-mass stars like our Sun.

The new investigation suggests now that the formation of stars of any kind and epoch are controlled by the same universal processes: "It is amazing to see these similarities, as if star formation on all scales and epochs is controlled by a common DNA forged in the early Universe", says Dominique Meyer, the first author of the study and post-doc in the Emmy Noether Group.

The clumps, explains Wilhelm Kley, are also excellent candidates for the formation of Solar-type companions to massive stars: "These companions will also influence their future evolution."

The results will help to develop new observing strategies for detecting these luminosity outbursts - and even for directly imaging the high-density clumps in accretion disks around very young massive stars.

This will be a task for modern observing facilities such as the Atacama Large Millimeter Array (ALMA) of the European Southern Observatory (ESO) or the future European Extremely Large Telescope (E-ELT).

Publication in "Monthly Notices of the Royal Astronomical Society" D. M.-A. Meyer, E. I. Vorobyov, R. Kuiper and W. Kley: On the existence of accretion-driven bursts in massive star formation. Monthly Notices of the Royal Astronomical Society, DOI: 10.1093/mnrasl/slw187


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Tsunami of stars and gas produces dazzling eye-shaped feature in galaxy
Charlottesville VA (SPX) Nov 08, 2016
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered a tsunami of stars and gas that is crashing midway through the disk of a spiral galaxy known as IC 2163. This colossal wave of material - which was triggered when IC 2163 recently sideswiped another spiral galaxy dubbed NGC 2207 - produced dazzling arcs of intense star formation that resemble a pair of eyel ... read more


STELLAR CHEMISTRY
Bioelectronics at the speed of life

NREL finds bacterium that uses both CO2 and cellulose to make biofuels

State partnerships can promote increased bio-energy production, reduce emissions

Turning biofuel waste into wealth in a single step

STELLAR CHEMISTRY
Chemists develop world's first light-seeking synthetic Nanorobot

'Bots' step up for 2016 election news coverage

Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

US warned against Chinese takeover of German firm: report

STELLAR CHEMISTRY
Alberta pushing hard on renewable energy pedal

Cuomo announces major progress in offshore wind development

New York set for offshore wind after environmental review

OX2 signs 148 MW wind power deal with Aquila Capital and Google

STELLAR CHEMISTRY
VW's Audi hit with fresh emissions cheating lawsuit

Nissan aims for China launch of cheap electric car in 2 years

VW makes progress towards 3.0 l diesel settlement: judge

Pedestrians walk freely in a world of self-driving cars

STELLAR CHEMISTRY
Physicists induce superconductivity in non-superconducting materials

PPPL physicists build diagnostic that measures plasma velocity in real time

Salty batteries

Lithium ion extraction

STELLAR CHEMISTRY
Russia, China Plan Documents to Build 2 New Tianwan Nuclear Power Plant Reactors

Japan, India to ink controversial nuclear deal next week: reports

Rosatom Considers No Restrictions on Commercial Supplies of Uranium to US

A new method to help solve the problem of nuclear waste

STELLAR CHEMISTRY
Deeper carbon cuts needed to avoid climate tragedy: UN

New program makes energy-harvesting computers more reliable

Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

STELLAR CHEMISTRY
Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.