Solar Energy News  
TIME AND SPACE
The expansion of the universe simulated
by Staff Writers
Geneva, Switzerland (SPX) Mar 10, 2016


The gravitational waves generated during the formation of structures in the universe are shown. The structures (distribution of masses) are shown as bright dots, gravitational waves by ellipses. The size of the ellipse is proportional to the amplitude of the wave and its orientation represents its polarization. Image courtesy Ruth Durrer, UNIGE. For a larger version of this image please go here.

The Universe is constantly expanding. It changes, creating new structures that merge. But how does our Universe evolve? Physicists at the University of Geneva (UNIGE), Switzerland, have developed a new code of numerical simulations that offers a glimpse of the complex process of the formation of structures in the Universe.

Based on Einstein's equations, they were able to integrate the rotation of space-time into their calculations and calculate the amplitude of gravitational waves, whose existence was confirmed for the first time on February 12, 2016. This study is published in the journal Nature Physics.

Until now, scientists studied the formation of large-scale cosmological structures based numerical simulations of Newtonian gravitation. These codes postulate that space itself does not change, it is said to be static, while time goes on.

The simulations that it allows are very precise if the matter in the Universe moves slowly (i.e., about 300 km per second). However, when the matter particles move at high speed, this code only allows approximate calculations.

Furthermore, it does not describe the fluctuations of dark energy. Constituting 70% of the total energy of the Universe (the remaining 30% is made of dark matter and ordinary matter), it is responsible for the accelerated expansion of the Universe. Therefore, it was necessary to find a new way to simulate the formation of cosmological structures and allow the study of these two phenomena.

The theory of general relativity applied
Ruth Durrer's team from the Department of Theoretical Physics in the Faculty of Science at UNIGE, has thus created a code, named gevolution, based on Einstein's Theory of general relativity.

Indeed, general relativity considers space-time as being dynamical, that is to say that space and time are constantly changing, unlike the static space of Newtonian theory. The goal was to predict the amplitude and the impact of gravitational waves and frame-dragging (the rotation of space-time) induced by the formation of cosmological structures.

To do so, the physicists from UNIGE analysed a cubic portion in space, consisting of 60 billion zones with each containing a particle (that is to say, a portion of a galaxy), in order to study the way they move with respect to their neighbors.

Thanks to the LATfield2 library (developed by David Daverio from UNIGE), which solves nonlinear partial differential equations, and the Supercomputer from the Swiss Supercomputer Center in Lugano, the researchers were able to study the motion of particles and calculate the metric (the measure of distances and time between two galaxies in the Universe) using Einstein's equations.

The resulting spectra of these calculations allow to quantify the difference between the results obtained by gevolution and those coming from Newtonian codes. This allows to measure the effect of frame-dragging and gravitational waves introduced by the formation of structure in the Universe.

Gravitational waves and frame-dragging predicted by gevolution
Indeed, frame-dragging and gravitational waves have never been included in simulations until the creation of the gevolution code. This opens the way for the comparison of simulation results of the evolution of the Universe with observations. With their new code, the physicists at UNIGE will be able to test the theory of general relativity on much larger scales than at present.

In order to open research to a maximum in this field, Professor Ruth Durrer and her team will make their gevolution code public. Perhaps soon light will be shed on the mysteries of dark energy.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Universite de Geneve
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Smoking Gun Uncovering Secret of Cosmic Bullets
Bonn, Germany (SPX) Mar 03, 2016
LOFAR, the low-frequency array radio telescope, normally receives weak radio waves from the distant universe. But now and then an ultra-short, bright radio pulse is observed somewhere in between AM and FM radio frequencies. This radio blast would appear as a short cracking sound in your car radio. While usually ignored, this radio signal is actually the last SOS of an elementary particle enterin ... read more


TIME AND SPACE
Biofuels from algae: A budding technology yet to become viable

Researchers' new advance in quest for second generation biofuels

Improving biorefineries with bubbles

Study: Bubbles boost efficiency of biorefinery systems

TIME AND SPACE
In emergencies, should you trust a robot

Watch Google's AlphaGo computer take on world's best Go player

Japan 'robo' dogs eyed for quake rescue missions

Researchers unveil light-up, stretchable robot skin

TIME AND SPACE
Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

EU boasts of strides in renewable energy

Offshore U.K. to host world's largest wind farm

TIME AND SPACE
VW says wrongfooted by US going public on emissions

Scandal-hit VW gives new dates for 2015 results, shareholders' meet

Electric supercar wins young Croatian global fame

China's Geely mulls making, selling cars in Europe

TIME AND SPACE
Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

Syracuse chemists combine biology, nanotechnology to create alternate energy source

Plasma processing technique takes SNS accelerator to new energy highs

TIME AND SPACE
EDF finance chief quits over British nuclear power plant plan

AREVA Upgrades Reactor Coolant Pumps at Surry Power Station

German states file challenge against Belgian nuclear plants

Closure of France's oldest nuclear plant begins this year

TIME AND SPACE
China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

The forecast for renewable energy in 2016

TIME AND SPACE
US joins Honduran probe of environmentalist's murder

Thousands attend funeral of slain Honduran environmentalist

Honduran environmentalist murdered: family

Green groups urge DR Congo to keep forest moratorium









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.