Solar Energy News
FLORA AND FAUNA
The mystery of phosphite - a scientific detective story
A research team from Konstanz has uncovered a bacterial metabolism based on phosphorus that is both new and ancient. Team members on the picture (from left to right): Nicolai Muller, David Schleheck and Bernhard Schink. Image: University of Konstanz
The mystery of phosphite - a scientific detective story
by Staff Writers
Konstanz, Germany (SPX) Nov 13, 2023

Our story begins at the end of the 1980s, with a sheet of paper. On this sheet, a scientist calculated that the conversion of the chemical compound phosphite to phosphate would release enough energy to produce the cell's energy carrier - the ATP molecule. In this way, it should therefore be possible for a microorganism to supply itself with energy. Unlike most living organisms on our planet, this organism would not be dependent on energy supply from light or from the decomposition of organic matter.

The scientist actually succeeded in isolating such a microorganism from the environment. Its energy metabolism is based on the oxidation of phosphite to phosphate, just as predicted by the calculation. But how exactly does the biochemical mechanism work? Regrettably, the key enzyme needed to understand the biochemistry behind the process remained hidden - and thus the mystery remained unsolved for many years. In the following three decades, the sheet stayed in the drawer, the research approach was put on the back burner. Yet the scientist couldn't get the thought out of his head.

The scientist is Bernhard Schink, professor at the Limnological Institute of the University of Konstanz. Three decades after he made the calculation on paper, an unexpected discovery set the ball rolling again ...

A sewage plant, an unexpected find and a new species
What had been in the back of his mind for many years was finally found: of all places, in a sewage plant in Konstanz, only a few kilometres from Bernhard Schink's laboratory. Zhuqing Mao, a biology doctoral researcher from Konstanz, examined a sewage sludge sample and discovered a second microorganism that also gets its energy from phosphite. The Konstanz biologists led by Bernhard Schink placed this bacterium in an environment in which it had only phosphite as a food source. And indeed: the bacterial population grew.

"This bacterium subsists on phosphite oxidation, and as far as we know, exclusively on this reaction. It covers its energy metabolism this way, and can build up its cell substance from CO2 at the same time," explains Schink. "This bacterium is an autotrophic organism, like a plant. It does, however, not need light like a plant, as it draws its energy from phosphite oxidation". Surprisingly, it turned out that the bacterium is not only a new species, but actually forms an entirely new genus of bacteria.

Tracking down the molecular mechanism
From that point on, things happened very quickly. A whole network of Konstanz researchers dedicated themselves to unravelling the mystery, including Bernhard Schink, Nicolai Muller, David Schleheck, Jennifer Fleming and Olga Mayans. They produced a pure culture of this new bacterial strain, in which they were finally able to identify the key enzyme that triggers the oxidation of phosphite to phosphate.

"The breakthrough came with Nicolai Muller and his enzyme experiments", says David Schleheck. Nicolai Muller succeeded in clearly demonstrating the enzyme's activity, thereby uncovering the biochemical mechanism behind the key enzyme. Olga Mayans and Jennifer Fleming created a three-dimensional model of its enzyme structure and active centre to understand the reaction pathway.

"What was very surprising was that during its oxidation, phosphite is apparently coupled directly to the energy-carrier precursor AMP, whereby the energy carrier ADP is created. In a subsequent reaction, two of the generated ADPs are converted to one ATP, on which the organism ultimately lives," Nicolai Muller outlines the reaction pathway.

Finally, everything came together: The original sheet became a whole pile of papers, resulting in a publication in the scientific journal PNAS.

A remnant from 2.5 billion years ago
The discovery of a new type of energy metabolism is in itself a great scientific success. However, the research team thinks that this type of metabolism is by no means new, but very old, even ancient: around 2.5 billion years old.

"It is assumed that in the early days of evolution, when the Earth was cooling down, phosphorus was still present to a large extent in a partially reduced form and was only later gradually oxidized. The metabolism we have now discovered fits very well into the early phase of the evolution of microorganisms," Bernhard Schink explains.

The biochemical mechanism that the bacterium uses for its metabolism is therefore not new, but has most probably been preserved from the primeval times of our planet: back when life on our planet began and the first microorganisms had to feed on inorganic compounds such as phosphite. Thus the new scientific findings provide clues to the early biochemical evolution on our planet. In addition, they provide the key to a biochemical mechanism that makes life possible in very hostile places, possibly even on alien planets.

Who would have thought at the end of the 1980s that a piece of paper would set all this in motion ...

Research Report:AMP-dependent phosphite dehydrogenase, a phosphorylating enzyme in dissimilatory phosphite oxidation

Related Links
University of Konstanz
Darwin Today At TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
FLORA AND FAUNA
Elusive Attenborough echidna rediscovered in Indonesia
Bangkok (AFP) Nov 10, 2023
An elusive echidna feared extinct after disappearing for six decades has been rediscovered in a remote part of Indonesia, on an expedition that also found a new kind of tree-dwelling shrimp. The Zaglossus attenboroughi, a kind of long-beaked echidna named for famed British naturalist David Attenborough, had last been seen in 1961. Echidnas are nocturnal and shy, making them difficult to find at the best of times, and the Attenborough long-beaked echidna has never been recorded outside the extrem ... read more

FLORA AND FAUNA
Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

Engineers develop an efficient process to make fuel from carbon dioxide

Unlocking sugar to generate biofuels and bioproducts

FLORA AND FAUNA
AI images of white faces are now 'hyper-real': study

Pennsylvania Invests Millions in Astrobotic Technology

AI threatens millions of South Korean jobs, central bank says

How human faces can teach androids to smile

FLORA AND FAUNA
Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

Interior Secretary Haaland announces 15 clean energy projects in the West

Biden approves largest offshore wind project in US history

FLORA AND FAUNA
Amazon to sell new cars next year in US, starting with Hyundai

Deep decarbonization scenarios reveal importance of accelerating zero-emission vehicle adoption

Electric heavy lorries poised to overtake hydrogen trucks

Paris says to call vote on heavy SUV parking fee hike

FLORA AND FAUNA
Researchers aim to make cheaper fuel cells a reality

BMW probes Moroccan cobalt supplier over pollution claims

The secret to longer lasting batteries might be in how soap works, new study says

Urban Heat Island effect extends below ground to water sources

FLORA AND FAUNA
US opens way for nuclear investment in energy-hungry Philippines

Sweden plans huge investment in nuclear power

Kazakhstan to supply uranium to China

Novel technique used to observe molten salt intrusion in nuclear-grade graphite

FLORA AND FAUNA
German govt spending plans at risk as court rules

China emissions could fall in 2024 on renewables jump

EU vows 'substantial' contribution to climate damage fund

China-US climate pledge 'significant moment' pre-COP28

FLORA AND FAUNA
Lightning identified as the leading cause of wildfires in boreal forests, threatening carbon storage

Kenyans brave heavy rain to plant trees

Forests could absorb much more carbon, but does it matter?

Deforestation in Brazilian Amazon down 22% in a year

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.