Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Theory details how 'hot' monomers affect thin-film formation
by Staff Writers
Houston TX (SPX) Dec 23, 2014


Rice theoretical physicist Alberto Pimpinelli led a study to devise a mathematical model that predicts how "hot" monomers on cold substrates affect the growth of thin films being developed for next-generation electronics. Image courtesy Jeff Fitlow and Rice University.

Like a baseball player sliding into third, a hot monomer skids in a straight line along a cold surface until it's safely among its fellow molecules. This is not what usually happens when scientists assemble monomers to make thin films for next-generation electronics, but the details remained a puzzle until a team led by Rice University got involved.

Monomers are organic molecules that, in this application, form clusters and eventually complete layers.

Researchers at Rice and the University of Maryland led by Rice theoretical physicist Alberto Pimpinelli devised the first detailed model to quantify what they believe was the last unknown characteristic of film formation through deposition by vacuum sublimation and chemical vapor deposition.

Their work appears in Physical Review Letters. Scientists make films as thin as a single molecule in the same way they make graphene: They heat a gas in a furnace and wait for its bits to condense and aggregate into a solid.

Molecules in the gas hit a surface (typically mica in experiments, often silicon in applications) called a substrate, where they accumulate into a regular lattice.

Usually, according to Pimpinelli, organic molecules drawn by weak van der Waals forces alight on the substrate and skitter randomly from one point to another under the influence of vibrating phonons in the substrate's crystalline lattice until they bump into another molecule or, more likely, an island of other molecules to join.

Islands that gather enough monomers create a critical nucleus: Take one away and all of them could disassociate; add one and the nucleus becomes a stable structure able to join with other growing islands to form the film. Researchers understand how this happens, Pimpinelli said.

But when the substrate is cool enough to dampen its natural vibrations (for pentacene on mica, at about minus 190 degrees Fahrenheit) and the gas is hot enough, the molecules hit the substrate and skid in a straight line along its surface, which scientists call ballistic motion.

If they skid to a stop, they will wander until they find an island - or growing islands find them.

"The common wisdom has been that when molecules or atoms arrive at a substrate, their kinetic energy immediately dissipates into the substrate crystal," Pimpinelli said. "Their energy is essentially zero when they arrive at the surface, and they diffuse at random.

But what happens if they don't, if the energy is preserved long enough that the molecule keeps its velocity at the surface and continues on in a line? Traditionally, this aspect has been totally neglected." These skidding molecules can make islands grow, or knock other molecules off islands at or below the critical nucleation stage, perhaps even causing them to disassociate, he said.

Pimpinelli said nobody had successfully created a mathematical model that detailed the conditions under which ballistic, "nonthermal" motions could continue even after a molecule is adsorbed by the substrate.

"We already had a powerful mathematical framework for aggregation on surfaces," he said. "We have ways to describe in a lot of detail what happens to atoms, and can transfer those models lock, stock and barrel to these molecules - except for one: the 'hot' monomer.

"Because these hot monomers profoundly affect island nucleation, it's important for experimentalists to know how and why this happens," Pimpinelli said.

The speed of island growth affects their size, which in turn affects the size of the electrically significant boundaries that form when they come together. These grain boundaries tend to decrease the electrical and thermal conductivity of a material.

Pimpinelli took on the project when experimental associates in Austria observed that when they tried to grow films on cold substrates, clusters of organic molecules would form in a way that was only compatible with ballistically moving monomers.

Pimpinelli's collaborators were graduate student Josue Morales-Cifuentes and physics professor Theodore Einstein of the University of Maryland.

"With a low-temperature substrate, you will not see as much thermal motion, in which molecules hop here and there at random," Pimpinelli said.

"Clearly there was a different mechanism leading to a qualitative change in the islands they observed with an atomic force microscope." Pimpinelli said quick calculations involving the temperature of the substrate and the deposition rate of the monomers suggested the system could be modeled; more complex mathematics not only confirmed it, but also provided a way to predict how various molecules and substrates will interact at specific temperatures.

"By studying how the number of islands changes with these control parameters, one is able to know the size of the critical nucleus, the diffusion process, all the energies involved and how these molecules bind to each other and the substrate," he said.

"All the information, in principle, can be extracted by counting the islands on the surface."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Penn Researchers Show Commonalities in How Different Glassy Materials Fail
University Park PA (SPX) Dec 23, 2014
Glass is mysterious. It is a broad class of materials that extends well beyond the everyday window pane, but one thing that these disparate glasses seem to have in common is that they have nothing in common when it comes to their internal structures, especially in contrast with highly ordered and patterned crystals. Glassy systems can also range in scale: from things like metallic glasses, compo ... read more


TECH SPACE
Guelph Researchers Recipe: Cook Farm Waste into Energy

Conversion process turns biomass 'waste' into lucrative chemical products

Central America's new coffee buzz: renewable energy

Boeing completes test flight with 'green diesel'

TECH SPACE
Pitt team publishes new findings from mind-controlled robot arm project

QinetiQ North America refurbishing, modernizing Talon robots used by the military

Robot named 'Athena' becomes first humanoid robot to pay for a seat on a flight

First steps for Hector the robot stick insect

TECH SPACE
Panama makes climate splash with wind energy

China snaps up UK wind farms

Poland faces EU fines over renewable energy failures

Scotland claims leads in low-carbon agenda

TECH SPACE
Honda to recall almost 570,000 vehicles in China

Rice study fuels hope for natural gas cars

Google self-driving car prototype ready to try road

Dongfeng, Huawei partner for Internet-enabled cars

TECH SPACE
Future batteries: Lithium-sulfur with a graphene wrapper

Computational clues into the structure of a promising energy conversion catalyst

Electron spin could be the key to high-temperature superconductivity

Chinese power companies pursue smart grids

TECH SPACE
Belgium seeks to push back closure of two nuclear plants

S. Korea heightens cyber security watch on hacking

S. Korea says nuclear reactors safe after cyber-attacks

First UAE nuclear plant to start in 2017: official

TECH SPACE
How Climate Change Could Leave Cities in the Dark

The physics of champagne bubbles and our future energy needs

Global CO2 emissions increase to new all-time record, but growth is slowing

NYC owners should tap energy and economic benefits of cogeneration

TECH SPACE
Ecuador returning German money in environment row

Clearing rainforests distorts wind and water, packs climate wallop beyond carbon

Seeing the forest for the trees

NASA Study Shows 13-year Record of Drying Amazon Caused Vegetation Declines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.