Solar Energy News  
SOLAR DAILY
This hydrogen fuel machine could be the ultimate guide to self-improvement
by Staff Writers
Berkeley CA (SPX) Apr 06, 2021

Guosong Zeng, a postdoctoral scholar in Berkeley Lab's Chemical Sciences Division, at work testing an artificial photosynthesis device made of gallium nitride. Zeng, along with Berkeley Lab staff scientist Francesca Toma, discovered that the device improves with use.

Three years ago, scientists at the University of Michigan discovered an artificial photosynthesis device made of silicon and gallium nitride (Si/GaN) that harnesses sunlight into carbon-free hydrogen for fuel cells with twice the efficiency and stability of some previous technologies.

Now, scientists at the Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) - in collaboration with the University of Michigan and Lawrence Livermore National Laboratory (LLNL) - have uncovered a surprising, self-improving property in Si/GaN that contributes to the material's highly efficient and stable performance in converting light and water into carbon-free hydrogen. Their findings, reported in the journal Nature Materials, could help radically accelerate the commercialization of artificial photosynthesis technologies and hydrogen fuel cells.

"Our discovery is a real game-changer," said senior author Francesca Toma, a staff scientist in the Chemical Sciences Division at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). Usually, materials in solar fuels systems degrade, become less stable and thus produce hydrogen less efficiently, she said. "But we discovered an unusual property in Si/GaN that somehow enables it to become more efficient and stable. I've never seen such stability."

Previous artificial photosynthesis materials are either excellent light absorbers that lack durability; or they're durable materials that lack light-absorption efficiency.

But silicon and gallium nitride are abundant and cheap materials that are widely used as semiconductors in everyday electronics such as LEDs (light-emitting diodes) and solar cells, said co-author Zetian Mi, a professor of electrical and computer engineering at the University of Michigan who invented Si/GaN artificial photosynthesis devices a decade ago.

When Mi's Si/GaN device achieved a record-breaking 3 percent solar-to-hydrogen efficiency, he wondered how such ordinary materials could perform so extraordinarily well in an exotic artificial photosynthesis device - so he turned to Toma for help.

HydroGEN: Taking a Team Science approach to solar fuels
Mi had learned of Toma's expertise in advanced microscopy techniques for probing the nanoscale (billionths of a meter) properties of artificial photosynthesis materials through HydroGEN, a five-national lab consortium supported by the DOE's Hydrogen and Fuel Cell Technologies Office, and led by the National Renewable Energy Laboratory to facilitate collaborations between National Labs, academia, and industry for the development of advanced water-splitting materials.

"These interactions of supporting industry and academia on advanced water-splitting materials with the capabilities of the National Labs are precisely why HydroGEN was formed - so that we can move the needle on clean hydrogen production technology," said Adam Weber, Berkeley Lab's Hydrogen and Fuel Cell Technologies Lab Program Manager and Co-Deputy Director of HydroGEN.

Toma and lead author Guosong Zeng, a postdoctoral scholar in Berkeley Lab's Chemical Sciences Division, suspected that GaN might be playing a role in the device's unusual potential for hydrogen production efficiency and stability.

To find out, Zeng carried out a photoconductive atomic force microscopy experiment at Toma's lab to test how GaN photocathodes could efficiently convert absorbed photons into electrons, and then recruit those free electrons to split water into hydrogen, before the material started to degrade and become less stable and efficient.

They expected to see a steep decline in the material's photon absorption efficiency and stability after just a few hours. To their astonishment, they observed a 2-3 orders of magnitude improvement in the material's photocurrent coming from tiny facets along the "sidewall" of the GaN grain, Zeng said. Even more perplexing was that the material had increased its efficiency over time, even though the overall surface of the material didn't change that much, Zeng said. "In other words, instead of getting worse, the material got better," he said.

To gather more clues, the researchers recruited scanning transmission electron microscopy (STEM) at the National Center for Electron Microscopy in Berkeley Lab's Molecular Foundry, and angle-dependent X-ray photon spectroscopy (XPS).

Those experiments revealed that a 1 nanometer layer mixed with gallium, nitrogen, and oxygen - or gallium oxynitride - had formed along some of the sidewalls. A chemical reaction had taken place, adding "active catalytic sites for hydrogen production reactions," Toma said.

Density functional theory (DFT) simulations carried out by co-authors Tadashi Ogitsu and Tuan Anh Pham at LLNL confirmed their observations. "By calculating the change of distribution of chemical species at specific parts of the material's surface, we successfully found a surface structure that correlates with the development of gallium oxynitride as a hydrogen evolution reaction site," Ogitsu said. "We hope that our findings and approach - a tightly integrated theory-experiments collaboration enabled by the HydroGEN consortium - will be used to further improve the renewable hydrogen production technologies."

Mi added: "We've been working on this material for over 10 years - we know it's stable and efficient. But this collaboration helped to identify the fundamental mechanisms behind why it gets more robust and efficient instead of degrading. The findings from this work will help us build more efficient artificial photosynthesis devices at a lower cost."

Looking ahead, Toma said that she and her team would like to test the Si/GaN photocathode in a water-splitting photoelectrochemical cell, and that Zeng will experiment with similar materials to get a better understanding of how nitrides contribute to stability in artificial photosynthesis devices - which is something they never thought would be possible.

"It was totally surprising," said Zeng. "It didn't make sense - but Pham's DFT calculations gave us the explanation we needed to validate our observations. Our findings will help us design even better artificial photosynthesis devices."

"This was an unprecedented network of collaboration between National Labs and a research university," said Toma. "The HydroGEN consortium brought us together - our work demonstrates how the National Labs' Team Science approach can help solve big problems that affect the entire world."

Research paper


Related Links
Lawrence Berkeley National Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
NTU Singapore scientists design 'smart' device to harvest daylight
Singapore (SPX) Apr 01, 2021
A team of Nanyang Technological University, Singapore (NTU Singapore) researchers has designed a 'smart' device to harvest daylight and relay it to underground spaces, reducing the need to draw on traditional energy sources for lighting. In Singapore, authorities are looking at the feasibility of digging deeper underground to create new space for infrastructure, storage, and utilities. Demand for round-the-clock underground lighting is therefore expected to rise in the future. To develop a d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Carbon-neutral 'biofuel' from lakes

Turning wood into plastic

'Keep off the grass': the biofuel that could help us achieve net zero

Shrub willow as a bioenergy crop

SOLAR DAILY
Even without a brain, Penn Engineering's metal-eating robots can search for food

The largest European robotics and space event is counting down the time until take off!

A robot that senses hidden objects

US military must accelerate use of artificial intelligence, JAIC chief says

SOLAR DAILY
US to invest heavily to boost offshore wind farms

TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

SOLAR DAILY
The road not taken: South Korea's self-driving professor

China's smartphone maker Xiaomi to invest $10bn in electric vehicles

VW pulls a fast one: 'Voltswagen' rebrand a ruse

VW seeks damages from ex-CEOs over dieselgate scandal

SOLAR DAILY
Thermal power nanogenerator created without solid moving parts

Is battery recycling environmentally friendly?

Cooling homes without warming the planet

Researchers harvest energy from radio waves to power wearable devices

SOLAR DAILY
New project to research nuclear decontamination robots

Framatome commissions high-precision measurement facility in Jeumont, France

How many countries are ready for nuclear-powered electricity?

Scientists find explanation for abnormally fast release of gas from nuclear fuel

SOLAR DAILY
How Biden's infrastructure plan addresses the climate crisis

World Bank to align financing with Paris Climate Accord

WTO to work with Europeans on legality of EU carbon tax plan

'Go big': Biden to launch sweeping infrastructure plan

SOLAR DAILY
Sharp increase in destruction of virgin forest in 2020

Coffee waste can accelerate the recovery of tropical forests

Rich nation appetites driving tropical deforestation

Indigenous people 'best guardians' of LatAm forests, says FAO









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.