Nanocavity may improve ultrathin solar panels by Staff Writers Buffalo NY (SPX) May 17, 2016
The future of movies and manufacturing may be in 3-D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials. One of the latest advancements in these fields centers on molybdenum disulfide (MoS2), a two-dimensional semiconductor that, while commonly used in lubricants and steel alloys, is still being explored in optoelectronics. Recently, engineers placed a single layer of MoS2 molecules on top of a photonic structure called an optical nanocavity made of aluminum oxide and aluminum. (A nanocavity is an arrangement of mirrors that allows beams of light to circulate in closed paths. These cavities help us build things like lasers and optical fibers used for communications.) The results, described in the paper "MoS2 monolayers on nanocavities: enhancement in light-matter interaction" published in April by the journal 2D Materials, are promising. The MoS2 nanocavity can increase the amount of light that ultrathin semiconducting materials absorb. In turn, this could help industry to continue manufacturing more powerful, efficient and flexible electronic devices. "The nanocavity we have developed has many potential applications," says Qiaoqiang Gan, PhD, assistant professor of electrical engineering in the University at Buffalo's School of Engineering and Applied Sciences. "It could potentially be used to create more efficient and flexible solar panels, and faster photodetectors for video cameras and other devices. It may even be used to produce hydrogen fuel through water splitting more efficiently." A single layer of MoS2 is advantageous because unlike another promising two-dimensional material, graphene, its bandgap structure is similar to semiconductors used in LEDs, lasers and solar cells. "In experiments, the nanocavity was able to absorb nearly 70 percent of the laser we projected on it. Its ability to absorb light and convert that light into available energy could ultimately help industry continue to more energy-efficient electronic devices," said Haomin Song, a PhD candidate in Gan's lab and a co-lead researcher on the paper. Industry has kept pace with the demand for smaller, thinner and more powerful optoelectronic devices, in part, by shrinking the size of the semiconductors used in these devices. A problem for energy-harvesting optoelectronic devices, however, is that these ultrathin semiconductors do not absorb light as well as conventional bulk semiconductors. Therefore, there is an intrinsic tradeoff between the ultrathin semiconductors' optical absorption capacity and their thickness. The nanocavity, described above, is a potential solution to this issue. Zhiwen Liu, PhD, professor of electrical engineering at Penn State University Park, is the paper's other co-lead author. Additional authors include UB graduate students Haomin Song and Dengxin Ji; and Penn State University Park students Corey Janisch (also a co-lead researcher), Chanjing Zhou, Ana Laura Elias and Mauricio Terrones.
Related Links University at Buffalo All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |