Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Time-traveling photons connect general relativity to quantum mechanics
by Staff Writers
Moscow (RIA Novosti) Jun 30, 2014


Space-time structure exhibiting closed paths in space (horizontal) and time (vertical). A quantum particle travels through a wormhole back in time and returns to the same location in space and time. Image courtesy Martin Ringbauer.

Scientists have simulated time travel by using particles of light acting as quantum particles sent away and then brought back to their original space-time location. This is a huge step toward marrying two of the most irreconcilable theories in physics.

Since traveling all the way to a black hole to see if an object you're holding would bend, break or put itself back together in inexplicable ways is a bit of a trek, scientists have decided to find a point of convergence between general relativity and quantum mechanics in lab conditions, and they achieved success.

Australian researchers from the UQ's School of Mathematics and Physics wanted to plug the holes in the discrepancies that exist between two of our most commonly accepted physics theories, which is no easy task: on the one hand, you have Einstein's theory of general relativity, which predicts the behavior of massive objects like planets and galaxies; but on the other, you have something whose laws completely clash with Einstein's - and that is the theory of quantum mechanics, which describes our world at the molecular level. And this is where things get interesting: we still have no concrete idea of all the principles of movement and interaction that underpin this theory.

Natural laws of space and time simply break down there.

The light particles used in the study are known as photons, and in this University of Queensland study, they stood in for actual quantum particles for the purpose of finding out how they behaved while moving through space and time.

The team simulated the behavior of a single photon that travels back in time through a wormhole and meets its older self - an identical photon. "We used single photons to do this but the time-travel was simulated by using a second photon to play the part of the past incarnation of the time traveling photon,"said UQ Physics Professor Tim Ralph as quoted by The Speaker.

The findings were published in the journal Nature Communications and gained support from the country's key institutions on quantum physics.

Some of the biggest examples of why the two approaches can't be reconciled concern the so-called space-time loop. Einstein suggested that you can travel back in time and return to the starting point in space and time. This presented a problem, known commonly as the 'grandparents paradox,' theorized by Kurt Godel in 1949: if you were to travel back in time and prevent your grandparents from meeting, and in so doing prevent your own birth, the classical laws of physics would prevent you from being born.

But Tim Ralph has reminded that in 1991, such situations could be avoided by harnessing quantum mechanics' flexible laws: "The properties of quantum particles are 'fuzzy' or uncertain to start with, so this gives them enough wiggle room to avoid inconsistent time travel situations," he said.

There are still ways in which science hasn't tested the meeting points between general relativity and quantum mechanics - such as when relativity is tested under extreme conditions, where its laws visibly seem to bend, just like near the event horizon of a black hole.

But since it's not really easy to approach one, the UQ scientists were content with testing out these points of convergence on photons.

"Our study provides insights into where and how nature might behave differently from what our theories predict," Professor Ralph said.

Source: RIA Novosti

.


Related Links
UQ School of Mathematics and Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Laser Physics upside down
Vienna, Austria (SPX) Jun 20, 2014
At the Vienna University of Technology a system of coupled lasers has been created which exhibits truly paradoxical behaviour: An increase in energy supply switches the lasers off, reducing the energy can switch them on. Sound waves fade, water waves ebb, light waves are dissipated by a wall. The absorption of waves is a very common phenomenon. But only recently have physicists realized th ... read more


TIME AND SPACE
A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

In Austria, heat is 'recycled' from the sewer

Genome could unlock eucalyptus potential for paper, fuel and fiber

TIME AND SPACE
Collaborative learning -- for robots

IBM's Watson app whips up Big Data in the kitchen

Japan unveils 'world's first' android newscaster

Japan robot firm showcases thought-controlled suits

TIME AND SPACE
VentAir Introduces Groundbreaking Wind Energy Innovation

Offshore wind dominates British renewable power sector

Scotland boasts of financial weight behind climate change fight

Massachusetts to host sixth U.S. lease for offshore wind energy

TIME AND SPACE
Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

NMSU PACE team develops mobile transportation device

Hybrid Vehicles More Fuel Efficient In India, China Than in US

TIME AND SPACE
Light-emitting diode treatments outperform traditional lighting methods

USC scientists create new battery that's cheap, clean, rechargeable...and organic

World's first magnetic hose created

Scandlines hybrid electric ferries largest hybrid ferry fleet in the world

TIME AND SPACE
Angry scenes as Japan's TEPCO shareholders demand end to nuclearw

Fukushima operator eyes wholesale power market in Europe: report

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

TIME AND SPACE
Malware aims at US, Europe energy sector: researchers

Net energy analysis should become a standard policy tool

New voluntary measure aimed at protecting U.S. energy from cyberattacks

Zimbabwe switches $1.3 bn China power tender: minister

TIME AND SPACE
Incentives as effective as penalties for slowing Amazon deforestation

New study shows Indonesia's disastrous deforestation

Australian greens hail Tasmanian Wilderness decision

Conifers may give way to a more broad-leafed forest in the next century




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.