Solar Energy News
CARBON WORLDS
Tiny electromagnets made of ultra-thin carbon
When a circularly polarized light pulse (red) hits a micrometre-sized graphene disc (grey), a magnetic field is created for a fraction of an instant (black lines).
Tiny electromagnets made of ultra-thin carbon
by Staff Writers
Dresden, Germany (SPX) Dec 05, 2023

Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR): The experts, led by the University of Duisburg-Essen (UDE), fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices. The working group presents its study in the scientific online journal Nature Communications (DOI: 10.1038/s41467-023-43412-x).

Graphene consists of an ultra-thin sheet of just one layer of carbon atoms. But the material, which was only discovered as recently as 2004, displays remarkable properties. Among them is its ability to conduct electricity extremely well, and that is precisely what international researchers from Germany, Poland, India, and the USA took advantage of.

They applied thousands of tiny, micrometer-sized graphene discs onto a small chip using established semiconductor techniques. This chip was then exposed to a particular type of radiation situated between the microwave and infrared range: short terahertz pulses.

To achieve the best possible conditions, the working group, led by the UDE, used a particular light source for the experiment: The FELBE free-electron laser at the HZDR can generate extremely intense terahertz pulses. The astonishing result: "The tiny graphene disks briefly turned into electromagnets," reports HZDR physicist Dr. Stephan Winnerl.

"We were able to generate magnetic fields in the range of 0.5 Tesla, which is roughly ten thousand times the Earth's magnetic field." These were short magnetic pulses, only about ten picoseconds or one-hundredth of a billionth of a second long.

Radiation pulses stir electrons
The prerequisite for success: The researchers had to polarize the terahertz flashes in a specific way. Specialized optics changed the direction of oscillation of the radiation so that it moved, figuratively speaking, helically through space.

When these circularly polarized flashes hit the micrometer-sized graphene discs, the decisive effect occurred: Stimulated by the radiation, the free electrons in the discs began to circle - just like water in a bucket stirred with a wooden spoon. And because, according to the basic laws of physics, a circulating current always generates a magnetic field, the graphene disks mutated into tiny electromagnets.

"The idea is actually quite simple," says Martin Mittendorff, professor at the University of Duisburg-Essen. "In hindsight, we are surprised nobody had done it before." Equally astonishing is the efficiency of the process: Compared to experiments irradiating nanoparticles of gold with light, the experiment at the HZDR was a million times more efficient - an impressive increase. The new phenomenon could initially be used for scientific experiments in which material samples are exposed to short but strong magnetic pulses to investigate certain material properties in more detail.

The advantage: "With our method, the magnetic field does not reverse polarity, as is the case with many other methods," explains Winnerl. "It, therefore, remains unipolar." In other words, during the ten picoseconds that the magnetic pulse from the graphene disks lasts, the north pole remains a north pole and the south pole a south pole - a potential advantage for certain series of experiments.

The dream of magnetic electronics
In the long run, those minuscule magnets might even be useful for certain future technologies: As ultra-short radiation flashes generate them, the graphene discs could carry out extremely fast and precise magnetic switching operations. This would be interesting for magnetic storage technology, for example, but also for so-called spintronics - a form of magnetic electronics.

Here, instead of electrical charges flowing in a processor, weak magnetic fields in the form of electron spins are passed on like tiny batons. This may, so it is hoped, significantly speed up the switching processes once again. Graphene disks could conceivably be used as switchable electromagnets to control future spintronic chips.

However, experts would have to invent very small, highly miniaturized terahertz sources for this purpose - certainly still a long way to go. "You cannot use a full-blown free-electron laser for this, like the one we used in our experiment," comments Stephan Winnerl. "Nevertheless, radiation sources fitting on a laboratory table should be sufficient for future scientific experiments." Such significantly more compact terahertz sources can already be found in some research facilities.

Research Report:Strong transient magnetic fields induced by THz-driven plasmons in graphene disks

Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Controversial carbon credits flood COP28, yet still no rules
Dubai (AFP) Dec 4, 2023
The COP28 climate talks have been flooded with announcements hyping controversial carbon credits before rules for them have been hammered out, with environmental groups fearing "greenwashing" on a massive scale. The concept behind the credits has taken a major hit recently as scientific research has repeatedly shown claims of reduced emissions under the schemes are often hugely overestimated - or simply non-existent. Carbon credits allow corporations - or countries under certain conditions - ... read more

CARBON WORLDS
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

CARBON WORLDS
Google looks to take generative AI lead with Gemini

AI accelerates problem-solving in complex scenarios

UK probes Microsoft-OpenAI partnership

Snail-inspired robot could scoop ocean microplastics

CARBON WORLDS
UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

CARBON WORLDS
Stellantis to test electric vehicle battery swapping in Madrid

China's electric bus revolution glides on

To help robocars make moral decisions, researchers ditch the 'trolley problem'

US proposes EV tax credit rules to curb Chinese inputs

CARBON WORLDS
SLAC Joins Forces with Leading Institutions to Advance Fusion Energy Research

Cost-effective electrocatalysts for cleaner hydrogen fuel production

Japanese experimental nuclear fusion reactor inaugurated

New study shows how universities are critical to emerging fusion industry

CARBON WORLDS
Orano wraps up Crystal River 3 Reactor dismantling ahead of schedule

China launches world's first fourth-generation nuclear reactor

Making nuclear energy facilities easier to build and transport

Framatome backs Global Morpho Pharma's high-capacity Lutetium-177 separation process

CARBON WORLDS
'Unabated': a word to split the world at COP28

COP28 pledges meet only 30% of needed energy emission cuts: IEA

'Climate conscious' banks lend more to polluters; Denmark wants 90% cut by 2040

France adopts corporate sustainability reporting

CARBON WORLDS
'It destroys everything': Amazon community fights carbon credit project

New study offers cautious hope about the resilience of redwoods

New suspect in murder of Honduras environmental leader

France pays Congo, Papua New Guinea $150 million to save forests

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.