Subscribe free to our newsletters via your
. Solar Energy News .




WATER WORLD
Tiny plankton could have big impact on climate
by Staff Writers
Paris (SPX) Sep 18, 2013


Researchers check the "mesocosms," eight-meter long floatation frames carrying plastic bags with a capacity of 50 cubic meters, deployed for a five-week long field study on ocean acidification conducted in the Kongsfjord off the Arctic archipelago of Svalbard. The results are published in the EGU open access journal Biogeosciences. (This image is free to use but attribution is required.) Credit: Ulf Riebesell/GEOMAR.

As the climate changes and oceans' acidity increases, tiny plankton seem set to succeed. An international team of marine scientists has found that the smallest plankton groups thrive under elevated carbon dioxide (CO2) levels. This could cause an imbalance in the food web as well as decrease ocean CO2 uptake, an important regulator of global climate.

The results of the study, conducted off the coast of Svalbard, Norway, in 2010, are now compiled in a special issue published in Biogeosciences, a journal of the European Geosciences Union.

"If the tiny plankton blooms, it consumes the nutrients that are normally also available to larger plankton species," explains Ulf Riebesell, a professor of biological oceanography at the GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany and head of the experimental team. This could mean the larger plankton run short of food.

Large plankton play an important role in carbon export to the deep ocean, but in a system dominated by the so-called pico- and nanoplankton, less carbon is transported out of surface waters. "This may cause the oceans to absorb less CO2 in the future," says Riebesell.

The potential imbalance in the plankton food web may have an even bigger climate impact. Large plankton are also important producers of a climate-cooling gas called dimethyl sulphide, which stimulates cloud-formation over the oceans. Less dimethyl sulphide means more sunlight reaches the Earth's surface, adding to the greenhouse effect. "These important services of the ocean may thus be significantly affected by acidification."

Ecosystems in the Arctic are some of the most vulnerable to acidification because the cold temperatures here mean that the ocean absorbs more carbon dioxide. "Acidification is faster there than in temperate or tropical regions," explains the coordinator of the European Project on Ocean Acidification (EPOCA), Jean-Pierre Gattuso of the Laboratory of Oceanography of Villefranche-sur-Mer of the French National Centre for Scientific Research (CNRS).

The increasing acidity is known to affect some calcifying organisms in the Arctic, including certain sea snails, mussels and other molluscs. But scientists did not know until now how ocean acidification alters both the base of the marine food web and carbon transport in the ocean.

The five-week long field study conducted in the Kongsfjord off the Arctic archipelago of Svalbard, under the EPOCA framework, intended to close this knowledge gap. For the experiment, the scientists deployed nine large 'mesocosms', eight-metre long floatation frames carrying plastic bags with a capacity of 50 cubic metres.

These water enclosures, developed at GEOMAR, allow researchers to study plankton communities in their natural environment under controlled conditions, rather than in a beaker in the lab. Few studies have looked at whole communities before.

The scientists gradually added CO2 to the mesocom water so that it reached acidity levels expected in 20, 40, 60, 80 and 100 years, with two bags left as controls. They also added nutrients to simulate a natural plankton bloom, as reported in the Biogeosciences special issue.

The team found that, where CO2 was elevated, pico- and, to a lesser extent, nanoplankton grew, drawing down nutrients so there were less available to larger plankton. "The different responses we observed made it clear that the communities' sensitivity to acidification depends strongly on whether or not nutrients are available," Riebesell summarises.

"Time and [time] again the tiniest plankton benefits from the surplus CO2, they produce more biomass and more organic carbon, and dimethyl sulphide production and carbon export are decreasing," he concludes.

.


Related Links
European Geosciences Union
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Earth's wobble "fixes" dinner for marine organisms
Princeton NJ (SPX) Sep 18, 2013
The cyclic wobble of the Earth on its axis controls the production of a nutrient essential to the health of the ocean, according to a new study in the journal Nature. The discovery of factors that control this nutrient, known as "fixed" nitrogen, gives researchers insight into how the ocean regulates its own life-support system, which in turn affects the Earth's climate and the size of marine fi ... read more


WATER WORLD
Sharing the risks/costs of biomass crops

Indy 500 race cars showcase green fuels

Researchers Read the Coffee Grounds and Find a Promising Energy Resource For the Future

Professor and student develop device to detect biodiesel contamination

WATER WORLD
Robots take over

A swarm on every desktop: Robotics experts learn from public

European researchers envision wearable exoskeleton for factory workers

Ultra-fast trading robots can send markets out of control

WATER WORLD
Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

No evidence of residential property value impacts near US wind turbines

French court rejects planned wind farm near Mont Saint Michel

WATER WORLD
Bicycle built by Dutch students sets speed record of 83.13 mph

Swiss engineers create hybrid car engine said capable of 117 mpg

The new allure of electric cars: Blazing-fast speeds

France's Renault teams up with electric car pioneer

WATER WORLD
New battery uses microbes to turn sewage into energy

Algeria gas plant report reveals energy security gaps

An Electric Atmosphere As Industry Specialists Gather From Around the Globe

Iraq Kurdish leader insists on right to export energy

WATER WORLD
Japan PM Abe at Fukushima in PR push

Over 1,000 tons of Fukushima water dumped after typhoon

Japan nuclear-free as last reactor switched off

Queensland aims to resume uranium mining

WATER WORLD
Renewable Energy to Represent One-Fifth of the Global Installed Capacity by 2030

WELTEC BIOPOWER Develops Green Energy in France

AREVA wins a contract for a cogeneration power plant in France

Tool Created to Avert Future Energy Crisis

WATER WORLD
Heavily logged forests still valuable for tropical wildlife

Mangroves bring wildlife back to Senegal coast

US slaps high dumping tariffs on Chinese wood products

Amazon deforestation due in part to soybean growing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement