. Solar Energy News .




.
NANO TECH
Tiny wires change behavior at nanoscale
by Staff Writers
Houston TX (SPX) Aug 30, 2011

File image of nanowires.

Thin gold wires often used in high-end electronic applications are wonderfully flexible as well as conductive. But those qualities don't necessarily apply to the same wires at the nanoscale.

A new study from Rice University finds gold wires less than 20 nanometers wide can become "brittle-like" under stress. It appears in the journal Advanced Functional Materials.

The paper by Rice materials scientist Jun Lou and his lab shows in microscopic detail what happens to nanowires under the kinds of strain they would reasonably undergo in, for instance, flexible electronics.

Their technique provides a way for industry to see just how nanowires made of gold, silver, tellurium, palladium and platinum are likely to hold up in next-generation nanoelectronic devices.

Lou and his team had already established that metal wires have unique properties on the nanoscale. They knew such wires undergo extensive plastic deformation and then fracture on both the micro- and nanoscale. In that process, materials under stress exhibit "necking"; that is, they deform in a specific region and then stretch down to a point before they eventually break.

"Gold is extremely ductile," said Lou, an assistant professor of mechanical engineering and materials science. "That means you can stretch it, and it can withstand very large displacement.

"But in this work, we discovered that gold is not necessarily very ductile at the nanoscale. When we stress it in a slightly different way, we can form a defect called a twin."

The term "twinning" comes from the mirrorlike atomic structure of the defect, which is unique to crystals. "At the boundary, the atoms on the left and right sides exactly mirror each other," Lou said. Twins in nanowires show up as dark lines across the wire under an electron microscope.

"The material is not exactly brittle, like glass or ceramic, which fracture with no, or very little, ductility," he said. "In this case, we call it brittle-like, which means it has significantly reduced ductility. There's still some, but the fracture behavior is different from regular necking."

Their experiments on 22 gold wires of less than 20 nanometers involved the delicate operation of clamping them to a transmission electron microscope/atomic force microscope sample holder and then pulling them at constant loading speeds. Twins appeared under the shear component of the stress, which forced atoms to shift at the location of surface defects and led to a kind of nanoscale tectonic fault across the wire.

"Once you have those kinds of damage-initiation sites formed in the nanowire, you will have a lot less ductility. The metal will fracture prematurely," Lou said. "We didn't expect such twin-boundary formations would have such profound effects."

With current technology, it's nearly impossible to align the grip points on either side of the wire, so shear force on the nanowires was inevitable. "But this kind of loading mode will inevitably be encountered in the real world," he said. "We cannot imagine all the nanowires in an application will be stressed in a perfectly uniaxial way."

Lou said the results are important to manufacturers thinking of using gold as a nanomechanical element. "Realistically, you could have some off-axis angle of stress, and if these twins form, you would have less ductility than you would expect. Then the design criteria would have to change.

"That's basically the central message of this paper: Don't be fooled by the traditional definition of 'ductile,'" he said. "At the nanoscale, things can happen differently."




Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Engineers discover nanoscale balancing act that mirrors forces at work in living systems
Ann Arbor MI (SPX) Aug 25, 2011
A delicate balance of atomic forces can be exploited to make nanoparticle superclusters that are uniform in size-an attribute that's important for many nanotech applications but hard to accomplish, University of Michigan researchers say. The same type of forces are at work bringing the building blocks of viruses together, and the inorganic supercluster structures in this research are in ma ... read more


NANO TECH
Panda poop may be a treasure trove of microbes for making biofuels

Oceans of energy to power a planetary civilization

Testing the water for bioenergy crops

Making Tomorrow's Bioenergy Yeasts Strong

NANO TECH
Sandia Labs' Gemini-Scout robot likely to reach trapped miners ahead of rescuers

Rehab robots lend stroke patients a hand

Wearable device that vibrates fingertip could improve sense of touch

Bionic microrobot mimics the 'water strider' and walks on water

NANO TECH
Researchers build a tougher, lighter wind turbine blade

Wind Power Now Less Expensive Than Natural Gas In Brazil

BMW to power Leipzig factory by wind energy

Chinese turbine maker enters Irish project

NANO TECH
Germany gets 1st EV fast-charging station

China's SAIC Motor first-half net profit up 46%

China's BYD to raise up to $939 mn in bond sale

Can electric cars win over the mass market?

NANO TECH
China blocks Europe moves to free money for Libya: envoys

Sinopec first-half net profit rises 12%

Philippine leader flies to China

Breakthrough in hydrogen fuel cells

NANO TECH
Miner Xstrata faces climate test case in Australiaq

Honeycomb Carbon Crystals Possibly Detected in Space

Has Graphene Been Detected in Space

Pioneers get close-up view of miracle material graphene

NANO TECH
Japan to lift power-saving decree earlier than planned

Romanian official quits after carbon market suspension

Kyoto team suspends Romania from carbon market

Japan enacts key bills, clears way for Kan to go

NANO TECH
Argentina, Uruguay end pulp mill row

Reforestation and Lions in Greece

Cambodian 'Avatars' rally to save forest

Increased tropical forest growth could release carbon from the soil


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement