Solar Energy News  
EXO WORLDS
To make amino acids, just add electricity
by Staff Writers
Fukuoka, Japan (SPX) Jan 30, 2020

A demonstration flow reactor constructed by researchers at Kyushu University continuously converts source materials into amino acids through a reaction driven by electricity. By choosing the right combination of electrocatalyst and source materials, the researchers achieved highly efficient synthesis of amino acids. This method for producing amino acids is less resource intensive than current methods, and similar methods may one day be used for providing people living in space with some of the essential nutrients they need to survive.

New research from Kyushu University in Japan could one day help provide humans living away from Earth some of the nutrients they need to survive in space or even give clues to how life started.

Researchers at the International Institute for Carbon-Neutral Energy Research reported a new process using electricity to drive the efficient synthesis of amino acids, opening the door for simpler and less-resource-intensive production of these key components for life.

In addition to being the basic building blocks of proteins, amino acids are also involved in various functional materials such as feed additives, flavor enhancers, and pharmaceuticals.

However, most current methods for artificially producing amino acids are based on fermentation using microbes, a process that is time and resource intensive, making it impractical for production of these vital nutrients in space-limited and resource-restricted conditions.

Thus, researchers have been searching for efficient production methods driven by electricity, which can be generated from renewable sources, but efforts so far have used electrodes of toxic lead or mercury or expensive platinum and resulted in low efficiency and selectivity.

Takashi Fukushima and Miho Yamauchi now report in Chemical Communications that they succeeded in efficiently synthesizing several types of amino acids using abundant materials.

"The overall reaction is simple, but we needed the right combination of starting materials and catalyst to get it to actually work without relying on rare materials," says Yamauchi.

The researchers settled on a combination of titanium dioxide as the electrocatalyst and an organic acid called alpha-keto acid as the key source material. Titanium dioxide is abundantly available on Earth, and alpha-keto acid can be easily extracted from woody biomass.

Placing the alpha-keto acid and a source of nitrogen, such as ammonia or hydroxylamine, in a water-based solution and running electricity through it using two electrodes, one of which was titanium dioxide, led to synthesis of seven amino acids - alanine, glycine, aspartic acid, glutamic acid, leucine, phenylalanine, and tyrosine - with high efficiency and high selectivity even under mild conditions.

Hydrogen, which is also needed as part of the reaction, was generated during the process as a natural result of running electricity between electrodes in water.

In addition to demonstrating the reaction, the researchers also built a flow reactor that can electrochemically synthesize the amino acids continuously, indicating the possibilities for scaling up production in the future.

"We hope that our approach will provide useful clues for the future construction of artificial carbon and nitrogen cycles in space," comments Yamauchi.

"Electrochemical processes are also believed to have played a role in the origin of life by producing fundamental chemicals for life through non-biological pathways, so our findings may also contribute to the elucidation of the mystery of the creation of life," she adds.

Research Report: "Electrosynthesis of amino acids from biomass-derivable acids on titanium dioxide"


Related Links
Kyushu University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Which will survive? A microorganism zoo in the stratosphere
Cologne, Germany (SPX) Jan 26, 2020
In September 2019, astrobiologists from the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) sent an entire 'zoo' of microorganisms, such as bacteria and moulds, on a nine-hour journey up to 30 kilometres above Earth. They travelled under a stratospheric balloon operated by the US space agency NASA for the 'Microbes in Atmosphere for Radiation, Survival and Biological Outcomes Experiment' (MARSBOx). At this altitude, the protective effects of Earth's atmosphere are greatly ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
New way of recycling plant-based plastics instead of letting them rot in landfill

Ecofriendly catalyst for converting methane into useful gases using light instead of heat

Principles for a green chemistry future

Acetone plus light creates a green jet fuel additive

EXO WORLDS
Spider-Man-style robotic graspers defy gravity

Anatomy of a Rover: The Mechanics of a Winning Student Vehicle Design

Team builds the first living robots

Can sea star movement inspire better robots?

EXO WORLDS
UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

EXO WORLDS
Tesla stock zooms as carmaker marks earnings 'turning point'

GM revives Hummer as all-electric vehicle

Toyota keeping China plants shut through Feb 9 over virus

Waymo to team with UPS on self-driving delivery plan

EXO WORLDS
A new stretchable battery can power wearable electronics

MTU engineers examine lithium battery defects

Nuclear waste turned into 'near-infinite powerful' batteries to potentially boost spacecraft might

Less may be more in next-gen batteries

EXO WORLDS
Molecule modification could improve reprocessing of spent nuclear fuel

Deep Isolation shares its nuclear waste disposal solution

Current model for storing nuclear waste is incomplete

Stress relieving heat treatment processes: Framatome continues its works

EXO WORLDS
ECB's Lagarde warns of 'danger of doing nothing' on climate

Climate crisis spawns high tide of greenwashing

Thunberg, Trump to offer competing visions at climate-focused Davos

Global resource consumption tops 100 bn tonnes for first time

EXO WORLDS
Yanomami leader pleads with world to save Amazon from Bolsonaro

Mexican conservationist found dead two weeks after disappearance

Photographer Claudia Andujar defends Brazil's Yanomami

Seeds of hope: Young volunteers replant Tunisia forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.