![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Quebec City, Canada (SPX) Mar 14, 2011 Another step has been taken in matter imaging. By using very short flashes of light produced by a technology developed at the national infrastructure Advanced Laser Light Source (ALLS) located at INRS University, researchers have obtained groundbreaking information on the electronic structure of atoms and molecules by observing for the first time ever electronic correlations using the method of high harmonic generation (HHG). Made by a team of researchers from the Energy, Materials, and Telecommunications Center of INRS and the National Research Council Canada/University of Ottawa Joint Attosecond Science Laboratory, this scientific breakthrough opens new opportunities for investigating electron dynamics on the timescale of the attosecond (0.000,000,000,000,000,001 second). Researchers used a new laser source developed at ALLS by Professor Francois Legare's team from the Energy, Materials, and Telecommunications Center in collaboration with colleagues from INRS University, NRC Canada, and the University of Ottawa. This laser source proves to be an ideal tool for HHG from atoms and molecules. The HHG spectra obtained through interaction of the laser source with xenon atoms provide information on electronic correlations by highlighting the giant resonance of xenon. In addition, results obtained at ALLS show that the laser source is ideal for developing a soft X-ray beamline delivering ultrafast x-ray laser pulses down to the nanometer wavelength. Built on national scientific collaboration, this study was conducted at ALLS by researchers Bruno E. Schmidt, Jean-Claude Kieffer, and Francois Legare of the Energy, Materials, and Telecommunications Center of INRS and by Andrew D. Shiner, Carlos Trallero-Herrero, Hans J. Worner, Serguei Patchkovskii, Paul B. Corkum, and David M. Villeneuve of the NRC Canada/University of Ottawa Joint Attosecond Science Laboratory.
Share This Article With Planet Earth
Related Links INRS University Understanding Time and Space
![]() ![]() San Diego CA (SPX) Feb 23, 2011 Once regarded as the stuff of science fiction, antimatter-the mirror image of the ordinary matter in our observable universe-is now the focus of laboratory studies around the world. While physicists routinely produce antimatter with radioisotopes and particle colliders, cooling these antiparticles and containing them for any length of time is another story. Once antimatter comes into conta ... read more |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |