Solar Energy News  
STELLAR CHEMISTRY
Tracing Aromatic Molecules in the Early Universe
by Staff Writers
Riverside CA (SPX) Mar 23, 2017


In this study, astronomers used data from the Keck and Spitzer telescopes to trace the star forming and dusty regions of galaxies at about 10 billion years ago. The picture in the background shows the GOODS field, one of the five regions in the sky that was observed for this study. Image courtesy Mario De Leo-Winkler and Spitzer Space Telescope, NASA, ESA And The Hubble Heritage Team. For a larger version of this image please go here.

A UC Riverside-led team of astronomers have taken us a step closer to better understand the formation and destruction mechanisms of dust molecules in the distant universe. A molecule found in car engine exhaust fumes that is thought to have contributed to the origin of life on Earth has made astronomers heavily underestimate the amount of stars that were forming in the early Universe, a University of California, Riverside-led study has found.

That molecule is called polycyclic aromatic hydrocarbon (PAH). On Earth it is also found in coal and tar. In space, it is a component of dust, which along with gas, fills the space between stars within galaxies.

The study, which was just published in the Astrophysical Journal, represents the first time that astronomers have been able to measure variations of PAH emissions in distant galaxies with different properties. It has important implications for the studies of distant galaxies because absorption and emission of energy by dust particles can change astronomers' views of distant galaxies.

"Despite the ubiquity of PAHs in space, observing them in distant galaxies has been a challenging task," said Irene Shivaei, a graduate student at UC Riverside, and leader of the study. "A significant part of our knowledge of the properties and amounts of PAHs in other galaxies is limited to the nearby universe."

The research was conducted as part of the University of California-based MOSDEF survey, a study that uses the Keck telescope in Hawaii to observe the content of about 1,500 galaxies when the universe was 1.5 to 4.5 billion years old. The researchers observed the emitted visible-light spectra of a large and representative sample of galaxies during the peak-era of star formation activity in the universe.

In addition, the researchers incorporated infrared imaging data from the NASA Spitzer Space Telescope and the European Space Agency-operated Herschel Space Observatory to trace the polycyclic aromatic hydrocarbon emission in mid-infrared bands and the thermal dust emission in far-infrared wavelengths.

The researchers concluded that the emission of polycyclic aromatic hydrocarbon molecules is suppressed in low-mass galaxies, which also have a lower fraction of metals, which are atoms heavier than hydrogen and helium. These results indicate that the polycyclic aromatic hydrocarbon molecules are likely to be destroyed in the hostile environment of low-mass and metal-poor galaxies with intense radiation.

The researchers also found that the polycyclic aromatic hydrocarbon emission is relatively weaker in young galaxies compared to older ones, which may be due to the fact that polycyclic aromatic hydrocarbon molecules are not produced in large quantities in young galaxies.

They found that the star-formation activity and infrared luminosity in the universe 10 billion years ago is approximately 30 percent higher than previously measured.

Studying the properties of the polycyclic aromatic hydrocarbon mid-infrared emission bands in distant universe is of fundamental importance to improving our understanding of the evolution of dust and chemical enrichment in galaxies throughout cosmic time.

The planned launch of the James Webb Space Telescope in 2018 will push the boundaries of our knowledge on dust and polycyclic aromatic hydrocarbon in the early universe.

In addition to Shivaei, the authors are: Naveen Reddy, Brian Siana, and Bahram Mobasher, of UC Riverside; Alice Shapley and Ryan L. Sanders, of UCLA; Mariska Kriek, Sedona H. Price, and Tom Zick, of UC Berkeley; and Alison L. Coil and Mojegan Azadi, of UC San Diego. Mario De Leo-Winkler, a postdoctoral researcher in the UCR Department of Physics and Astronomy, made significant contributions to this article.

Research paper

STELLAR CHEMISTRY
Distant galaxies are dominated by gas and stars so where is the Dark Matter
Munich, Germany (SPX) Mar 16, 2017
New observations of rotating galaxies at the peak epoch of galaxy formation, 10 billion years ago, surprisingly show that these massive, star-forming galaxies are completely dominated by baryonic or "normal" mass with dark matter playing a much smaller role in comparable regions of their outer disks than in the local universe. The international group of researchers led by the Max Planck In ... read more

Related Links
University Of California
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Community in chaotic Jakarta goes green to fight eviction

Study IDs link between sugar signaling and regulation of oil production in plants

NASA Study Confirms Biofuels Reduce Jet Engine Pollution

Scientists harness solar power to produce clean hydrogen from biomass

STELLAR CHEMISTRY
Origami-inspired Robot Can Hitch a Ride with a Rover

Quadruped robot exhibits spontaneous changes in step with speed

Kraken Sonar Systems gains funding for robotics project

'Tree-on-a-chip' passively pumps water for days

STELLAR CHEMISTRY
North Carolina offshore wind hailed as job creator

North Carolina ready for offshore wind energy auction

Flagship English Channel wind farm nears completion

French, Spanish companies set for more wind power off coast of France

STELLAR CHEMISTRY
China's Geely opens UK plant for electric London taxis

Intel deal may fuel Israel's rise as builder of car brains

Germany pushing e-mobility options

More gas guzzlers due to Trump? Not necessarily

STELLAR CHEMISTRY
TU Graz researchers show that enzyme function inhibits battery ageing

New gel-like coating beefs up the performance of lithium-sulfur batteries

Non-toxic material that generates electricity through hot and cold

New feedback system could allow greater control over fusion plasma

STELLAR CHEMISTRY
Loss-hit Toshiba nosedives on fears about future

The EIC and Nuclear AMRC sign MoU

German energy company RWE evolving for success

Potential approach to how radioactive elements could be 'fished out' of nuclear waste

STELLAR CHEMISTRY
CO2 stable for 3rd year despite global growth: IEA

Emissions flat for three years in a row, IEA says

New research urges a rethink on global energy subsidies

New Zealand lauded for renewables, but challenges remain

STELLAR CHEMISTRY
Reconsider the impact of trees on water cycles and climate, scientists ask

Late US billionaire's record land gift lays Chile row to rest

Did humans create the Sahara desert?

Louisiana wetlands hurting from accelerated sea level rise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.