Solar Energy News  
INTERNET SPACE
'Transformative electronics systems' to broaden wearable applications
by Staff Writers
Seoul, South Korea (SPX) Nov 03, 2019

illustration only

Imagine a handheld electronic gadget that can soften and deform when attached to our skin. This will be the future of electronics we all dreamed of. A research team at KAIST says their new platform called 'Transformative Electronics Systems' will open a new class of electronics, allowing reconfigurable electronic interfaces to be optimized for a variety of applications.

A team working under Professor Jae-Woong Jeong from the School of Electrical Engineering at KAIST has invented a multifunctional electronic platform that can mechanically transform its shape, flexibility, and stretchability. This platform, which was reported in Science Advances, allows users to seamlessly and precisely tune its stiffness and shape.

"This new class of electronics will not only offer robust, convenient interfaces for use in both tabletop or handheld setups, but also allow seamless integration with the skin when applied onto our bodies," said Professor Jeong.

The transformative electronics consist of a special gallium metal structure, hermetically encapsulated and sealed within a soft silicone material, combined with electronics that are designed to be flexible and stretchable. The mechanical transformation of the electronic systems is specifically triggered by temperature change events controlled by the user.

"Gallium is an interesting key material. It is biocompatible, has high rigidity in solid form, and melts at a temperature comparable to the skin's temperature," said lead author Sang-Hyuk Byun, a researcher at KAIST.

Once the transformative electronic platform comes in contact with a human body, the gallium metal encapsulated inside the silicone changes to a liquid state and softens the whole electronic structure, making it stretchable, flexible, and wearable.

The gallium metal then solidifies again once the structure is peeled off the skin, making the electronic circuits stiff and stable. When flexible electronic circuits were integrated onto these transformative platforms, it empowered them with the ability to become either flexible and stretchable or rigid.

"This technology could not have been achieved without interdisciplinary efforts," said co-lead author Joo Yong Sim, who is a researcher with ETRI. "We worked together with electrical, mechanical, and biomedical engineers, as well as material scientists and neuroscientists to make this breakthrough."

This universal electronics platform allowed researchers to demonstrate applications that were highly adaptable and customizable, such as a multi-purpose personal electronics with variable stiffness and stretchability, a pressure sensor with tuneable bandwidth and sensitivity, and a neural probe that softens upon implantation into brain tissue.

Applicable for both traditional and emerging electronics technologies, this breakthrough can potentially reshape the consumer electronics industry, especially in the biomedical and robotic domains. The researchers believe that with further development, this novel electronics technology can significantly impact the way we use electronics in our daily life.

Research paper


Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


INTERNET SPACE
A stretchable stopwatch lights up human skin
Washington DC (SPX) Oct 31, 2019
Imagine a runner who doesn't need to carry a stopwatch or cell phone to check her time: She could just gaze at the glowing stopwatch display on the back of her hand. Such human-machine interfaces are no longer science fiction, but they still have a way to go before becoming mainstream. Now, researchers reporting in ACS Materials Letters have developed a stretchable light-emitting device that operates at low voltages and is safe for human skin. Recently, scientists have developed stretchable ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Turning plastic trash into treasure

'Artificial leaf' successfully produces clean gas

New catalyst that can turn carbon dioxide into fuels

Biofuels could be made from bacteria that grow in seawater rather than from crude oil

INTERNET SPACE
New lightweight, portable robotic suit to increase running and walking performance

Robot acquires new, essential spacewalking functions says cosmonaut

Assembler robots make large structures from little pieces

Researchers build a soft robot with neurologic capabilities

INTERNET SPACE
Offshore wind power set for 15-fold increase: IEA

Wind turbine design and placement can mitigate negative effect on birds

Computer models show clear advantages in new types of wind turbines

Model helps choose wind farm locations, predicts output

INTERNET SPACE
Enabling autonomous vehicles to see around corners

Researchers develop platform for scalable testing of autonomous vehicle safety

China demand for Jaguar Land Rover contains Tata Motors losses

Driverless cars could lead to more traffic congestion

INTERNET SPACE
Shedding new light on the charging of lithium-ion batteries

System provides cooling with no electricity

In and out with 10-minute electrical vehicle recharge

Army Air Force meteorologist turned material scientist shares the Nobel Prize in Chemistry 2019

INTERNET SPACE
Audit raps French energy giant EDF over nuclear project

GE Hitachi Nuclear Energy announces small modular reactor technology collaboration in Poland

A new stable form of plutonium discovered at the ESRF

Two in tight race to lead UN nuclear watchdog

INTERNET SPACE
Energy giants face 35% output cut to hit Paris climate goals: watchdog

S.Africa to increase coal-fired energy, sparking climate outcry

To save climate, tax carbon at $75 per ton: IMF

How to Harmonise Wildlife and Energy Manufacturing

INTERNET SPACE
Romanian rangers protest deaths of colleagues fighting illegal logging

Use the Amazon's natural bounty to save it: experts

From hotbed of crime to joggers' paradise: Nairobi forest thrives

Study reveals dry season increase in photosynthesis in Amazon rain forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.