Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Transitions between states of matter: It's more complicated, scientists find
by Staff Writers
New York NY (SPX) Nov 07, 2014


The seemingly simple process of phase changes-those transitions between states of matter-is more complex than previously known, NYU Chemistry Professor Mark Tuckerman and his colleagues have found. Their study reveals the need to rethink one of science's building blocks and, with it, how some of the basic principles underlying the behavior of matter are taught in our classrooms.

The seemingly simple process of phase changes--those transitions between states of matter--is more complex than previously known, according to research based at Princeton University, Peking University and New York University.

Their study, which appears in the journal Science, reveals the need to rethink one of science's building blocks and, with it, how some of the basic principles underlying the behavior of matter are taught in our classrooms.

The researchers examined the way that a phase change, specifically the melting of a solid, occurs at a microscopic level and discovered that the transition is far more involved than earlier models had accounted for.

"This research shows that phase changes can follow multiple pathways, which is counter to what we've previously known," explains Mark Tuckerman, a professor of chemistry and applied mathematics at New York University and one of the study's co-authors. "This means the simple theories about phase transitions that we teach in classes are just not right."

According to Tuckerman, scientists will need to change the way they think of and teach on phase changes.

The work stems from a 10-year project at Princeton to develop a mathematical framework and computer algorithms to study complex behavior in systems, explained senior author Weinan E, a professor in Princeton's Department of Mathematics and Program in Applied and Computational Mathematics.

Phase changes proved to be a crucial test case for their algorithm, E said. E and Tuckerman worked with Amit Samanta, a postdoctoral researcher at Princeton now at Lawrence Livermore National Laboratory, and Tang-Qing Yu, a postdoctoral researcher at NYU's Courant Institute of Mathematical Sciences.

"It was a test case for the rather powerful set of tools that we have developed to study hard questions about complex phenomena such as phase transitions," E said. "The melting of a relatively simple atomic solid such as a metal, proved to be enormously rich. With the understanding we have gained from this case, we next aim to probe more complex molecular solids such as ice."

The findings reveal that phase transition can occur via multiple and competing pathways and that the transitions involve at least two steps. The study shows that, along one of these pathways, the first step in the transition process is the formation of point defects--local defects that occur at or around a single lattice site in a crystalline solid.

These defects turn out to be highly mobile. In a second step, the point defects randomly migrate and occasionally meet to form large, disordered defect clusters.

This mechanism predicts that "the disordered cluster grows from the outside in rather than from the inside out, as current explanations suggest," Tuckerman notes.

"Over time, these clusters grow and eventually become sufficiently large to cause the transition from solid to liquid."

Along an alternative pathway, the defects grow into thin lines of disorder (called "dislocations") that reach across the system. Small liquid regions then pool along these dislocations, these regions expand from the dislocation region, engulfing more and more of the solid, until the entire system becomes liquid.

This study modeled this process by tracing copper and aluminum metals from an atomic solid to an atomic liquid state. The researchers used advanced computer models and algorithms to reexamine the process of phase changes on a microscopic level.

"Phase transitions have always been something of a mystery because they represent such a dramatic change in the state of matter," Tuckerman observes. "When a system changes from solid to liquid, the properties change substantially."

He adds that this research shows the surprising incompleteness of previous models of nucleation and phase changes--and helps to fill in existing gaps in basic scientific understanding.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
New York University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
The Peres conjecture is false!
Geneva, Switzerland (SPX) Nov 06, 2014
Since 1999, the conjecture by Asher Peres, who invented quantum teleportation, has piqued the interest of many scientists in the field. According to his hypothesis, the weakest form of quantum entanglement can never result in the strongest manifestation of the phenomenon. Today, a team of researchers from the University of Geneva (UNIGE), Switzerland, and the Hungarian Academy of Sciences ... read more


TIME AND SPACE
DARPA's EZ BAA Cuts Red Tape to Speed Funding of New Biotech Ideas

New process transforms wood, crop waste into valuable chemicals

Engineered bacteria pumps out higher quantity of renewable fuel

Boosting Biogasoline Production in Microbes

TIME AND SPACE
This robot makes you feel like a 'ghost' is in the room

Microbot muscles: Chains of particles assemble and flex

Amazon debuts Siri-style virtual assistant in speaker

NASA Installs Giant Composite Material Research Robot

TIME AND SPACE
Second stage of Snowtown Wind Farm blows away the competition

Wind power a key player in Quebec's energy strategy

Leaders Discuss Wind Power in Canada's Energy Future

British study raises questions about wind energy reliability

TIME AND SPACE
Funding for Uber could push value past $30 bn: report

QUT leading the charge for panel-powered car

Dongfeng, Huawei partner for Internet-enabled cars

Electric car revs to world record in Switzerland

TIME AND SPACE
Lighter, cheaper radio wave device could transform telecom

VTT demonstrates new technique for generating electricity

A billion holes can make a battery

Chinese power companies pursue smart grids

TIME AND SPACE
China's largest uranium mine reports more deposits

Spent Fuel Removed From One Fukushima Reactor

Japan local government approves first reactor restart

S.Africa and China sign nuclear build agreement

TIME AND SPACE
Anger as Turkish firm clears thousands of trees to build plant

Limiting short-lived pollutants cannot buy time on CO2 mitigation

British electric grid may shut factories if strained in winter

Climate: EU set for 24% emissions cut by 2020

TIME AND SPACE
NEIKER fells pine trees to study their wind resistance

Gardeners of Madagascar rainforest at risk

Groundwater patches play important role in forest health, water quality

Forests lose essential nitrogen in surprising way




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.