Solar Energy News  
TECH SPACE
Tunable windows for privacy, camouflage
by Staff Writers
Boston MA (SPX) Mar 21, 2016


With an applied voltage, the nanowires on either side of the glass become attracted to each other and move toward each other, squeezing and deforming the soft elastomer. Because the nanowires are scattered unevenly across the surface, the elastomer deforms unevenly. That uneven roughness causes light to scatter, turning the glass opaque. Image courtesy David Clarke/Harvard SEAS. For a larger version of this image please go here.

Say goodbye to blinds. Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a technique that can quickly change the opacity of a window, turning it cloudy, clear or somewhere in between with the flick of a switch.

Tunable windows aren't new but most previous technologies have relied on electrochemical reactions achieved through expensive manufacturing. This technology, developed by David Clarke, the Extended Tarr Family Professor of Materials, and postdoctoral fellow Samuel Shian, uses geometry adjust the transparency of a window.

The research is described in journal Optics Letters.

The tunable window is comprised of a sheet of glass or plastic, sandwiched between transparent, soft elastomers sprayed with a coating of silver nanowires, too small to scatter light on their own.

But apply an electric voltage and things change quickly.

With an applied voltage, the nanowires on either side of the glass are energized to move toward each other, squeezing and deforming the soft elastomer. Because the nanowires are distributed unevenly across the surface, the elastomer deforms unevenly. The resulting roughness causes light to scatter, turning the glass opaque.

The change happens in less than a second.

It's like a frozen pond, said Shian.

"If the frozen pond is smooth, you can see through the ice. But if the ice is heavily scratched, you can't see through," said Shian.

Clarke and Shian found that the roughness of the elastomer surface depended on the voltage, so if you wanted a window that is only lightly clouded, you would apply less voltage than if you wanted a totally opaque window.

"Because this is a physical phenomenon rather than based on a chemical reaction, it is a simpler and potentially cheaper way to achieve commercial tunable windows," said Clarke.

Current chemical-based controllable windows use vacuum deposition to coat the glass, a process that deposits layers of a material molecule by molecule. It's expensive and painstaking. In Clarke and Shian's method, the nanowire layer can be sprayed or peeled onto the elastomer, making the technology scalable for larger architectural projects.

Next the team is working on incorporating thinner elastomers, which would require lower voltages, more suited for standard electrical supplies.

Harvard's Office of Technology Development has filed a patent application on the technology and is engaging with potential licensees in the glass manufacturing industry.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard School of Engineering and Applied Sciences
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
The world's blackest material is now in spray form
Newhaven, UK (SPX) Mar 21, 2016
A whole range of products can now take advantage of Vantablack's astonishing characteristics, thanks to the development of a new spray version of the world's blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack. Vantablack's nano-structure absorbs virtually all ... read more


TECH SPACE
The flexible way to greater energy yield

Smaller, cheaper microbial fuel cells turn urine into electricity

Generating electricity with tomato waste

Lockheed and Concord Blue to build new bioenergy facility in Germany

TECH SPACE
Drexel research helps bacteria-powered microrobots plot a course

Robot learning companion offers custom-tailored tutoring

Light illuminates the way for bio-bots

Less than meets the eye

TECH SPACE
Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

TECH SPACE
Industry calls for fast lane for self-driving cars

US unveils emergency braking deal with automakers

VW dealers in Germany not obliged to take back diesel cars, court rules

Investors sue VW in Germany for more than 3 bn euros

TECH SPACE
Compressing turbulence to improve internal confinement fusion experiments

Pumping up energy storage with metal oxides

Could bread mold build a better rechargeable battery?

Advanced energy storage material gets unprecedented nanoscale analysis

TECH SPACE
France's EDF to decide on UK nuclear plant by May: Macron

China's advanced meltdown-free nuclear plant gets core component

Vessel carrying plutonium departs Japan port for US

Researchers crack 50-year-old nuclear waste problem, make storage safer

TECH SPACE
Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

TECH SPACE
Drought alters recovery of Rocky Mountain forests after fire

Recycling pecan wood for commercial growing substrates

China's forest recovery shows hope for mitigating global climate change

No logging at protected Tasmanian forest: Australia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.