Solar Energy News  
TIME AND SPACE
Turbulence in space might solve astrophysical mystery
by Staff Writers
Plainsboro NJ (SPX) Nov 06, 2018

file illustration only

Contrary to what many people believe, outer space is not empty. In addition to an electrically charged soup of ions and electrons known as plasma, space is permeated by magnetic fields with a wide range of strengths. Astrophysicists have long wondered how those fields are produced, sustained, and magnified.

Now, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have shown that plasma turbulence might be responsible, providing a possible answer to what has been called one of the most important unsolved problems in plasma astrophysics.

The researchers used powerful computers at the Princeton Institute for Computational Science and Engineering (PICSciE) and the National Energy Research Scientific Computing Center (NERSC) at the DOE's Lawrence Berkeley National Laboratory to simulate how the turbulence could intensify magnetic fields through what is known as the dynamo effect, in which the magnetic fields become stronger as the magnetic field lines twist and turn.

"This work constitutes an important step toward answering for the first time the question of whether turbulence can amplify magnetic fields to dynamical strengths in a hot, dilute plasma, such as that residing within clusters of galaxies," said Matthew Kunz, an astrophysics professor at Princeton University and an author of the paper, which was published in The Astrophysical Journal Letters.

Past research has focused on dynamos as they might occur in so-called collisional plasmas, in which particles collectively behave as a fluid. But intergalactic plasmas are collisionless, so past experiments are not necessarily relevant.

This new research is meant to address that gap. "We wanted to see how the dynamo would behave in the collisionless regime," said Denis St-Onge, graduate student in the Princeton Program in Plasma Physics at PPPL and lead author of the paper.

St-Onge and Kunz focused on the ways in which the velocities and magnetic fields of individual particles within collisionless plasma are directly linked. This linkage - if one quantity increases or decreases, the other must, too - would seem to rule out the existence of a dynamo. "If this were the whole story, it would be disastrous for the dynamo," said St-Onge.

"To match what we observe in space, the dynamo would have to increase the strength of the seed magnetic field by at least a factor of one trillion, but the energy of the particles would also have to increase, and there's just not enough available energy in the dynamo for that to happen."

To produce the strength of magnetic fields observed in space, the tie that binds particle energy to magnetism must be severed. This is just what St-Onge and Kunz observed in the computer simulations: that types of plasma turbulence known as mirror and firehose instabilities caused the plasma particles to scatter, and scattering broke the link between particle energy and magnetism and allowed the amplitudes of the magnetic fields to grow closer to what is observed in nature.

Future research, St-Onge notes, will focus on why this turbulent scattering occurs.

"In addition, we would like to investigate the specifics of particle scattering," St-Onge said. "How exactly do the instabilities cause the particles to scatter, how often does the scattering occur, and can the scattering lead to sudden, dramatic growth of a magnetic field? The last idea is a notion proposed by PPPL Director Steven Cowley years ago. We would like to investigate whether this is true."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
One step closer to complex quantum teleportation
Vienna, Austria (SPX) Nov 05, 2018
For future technologies such as quantum computers and quantum encryption, the experimental mastery of complex quantum systems is inevitable. Scientists from the University of Vienna and the Austrian Academy of Sciences have succeeded in making another leap. While physicists around the world are trying to increase the number of two-dimensional systems, so-called qubits, researchers around Anton Zeilinger are breaking new ground. They pursue the idea to use more complex quantum systems as qubits and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Experimental plasma generator offers path forward for better use of landfill gas as energy

Alcohols as carbon radical precursors

Reducing US coal emissions through biomass and carbon capture would boost employment

Scientists find a 'switch' to increase starch accumulation in algae

TIME AND SPACE
Pitt researcher uses video games to unlock new levels of AI

Fire ant colonies could inspire molecular machines, swarming robots

Shape-shifting robots perceive surroundings, make decisions for first time

NASA researchers teach machines to "see"

TIME AND SPACE
Wind farm 'predator' effect hits ecosystems: study

Coal-dependent Poland shifts on wind ahead of climate meeting

Extreme weather forcing renewable operators to strengthen project economics

Wind farms and reducing hurricane precipitation

TIME AND SPACE
Electriq~Global launches water-based fuel to power electric vehicles

Carbon-busting system to launch at massive Las Vegas auto week

Driverless vehicle experts get hands on experience in South Australia

Ford and Baidu partner up on testing self-driving cars in China

TIME AND SPACE
Inside job: A new technique to cool a fusion reactor

Shortening the rare-earth supply chain via recycling

E-magy Silicon enhances Lithium Ion Batteries, targeting for 50% additional capacity

New quantum criticality discovered in superconductivity

TIME AND SPACE
Saudi Arabia to build first nuclear research reactor

Russia, Uzbekistan hail $11 bn nuclear plant project during Putin visit

Scientists discover new properties of uranium compounds

US curbs China nuclear exports as Trump warns Americans not 'stupid'

TIME AND SPACE
Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

TIME AND SPACE
Fierce winds raze forests in storm-hit Italy

Two-thirds of remaining wilderness on Earth located in five countries

Brazil environment ministry condemns Bolsonaro plan

Economy depends on environment, WWF warns Brazil's Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.