Solar Energy News  
TECH SPACE
Turning a material upside down can sometimes make it softer
by Staff Writers
Barcelona, Spain (SPX) Oct 20, 2017


This is an artistic representation of the new material.

The ICN2 Oxide Nanophysics Group led by ICREA Prof. Gustau Catalan has recently published the latest findings from their research line on flexoelectricity in Advanced Materials. PhD student Kumara Cordero-Edwards is the lead author of this work, carried out in collaboration with researchers from the Autonomous University of Barcelona (UAB). Highlighted in the journal's frontispiece, the article outlines how the indentation toughness of polar crystals can be manipulated in such a way that they become easier or harder to dent from a given direction.

This is the result of the interaction between the localised flexoelectric polarisation caused by the mechanical stress gradient of the indentation, on the one hand, and the piezoelectric polarisation inherent in polar crystals, on the other. If the two polarisations run parallel, overall polarisation is going to be very strong.

This carries a higher energy cost, which makes the act of indentation itself more difficult. But if we turn the material over, the flexoelectric effect of the knock will be acting in the opposite direction to the spontaneous piezoelectric effect, making total polarisation weaker and indentation correspondingly easier.

But the observations of our researchers did not end there. In the case of a particular subset of piezoelectric materials, ferroelectrics, it is not even necessary to physically turn the material upside down; we can simply apply an external voltage to flip its polar axis.

These effects were observed not only for forceful indentations and/or perforations, but also for the gentler, non-destructive pressures delivered by the tip of an atomic force microscope. Aside from potential applications in smart coatings with switchable toughness, these effects could one day be used as a means of reading ferroelectric memories by touch alone.

Research paper

TECH SPACE
Electrode materials from the microwave oven
Munich, Germany (SPX) Oct 19, 2017
Power on the go is in demand: The higher the battery capacity, the larger the range of electric cars and the longer the operating time of cell phones and laptops. Dr. Jennifer Ludwig of the Technical University of Munich (TUM) has developed a process that allows a fast, simple, and cost-effective production of the promising cathode material lithium cobalt phosphate in high quality. The chemist w ... read more

Related Links
Universitat Autonoma de Barcelona
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Expanding Brazilian sugarcane could dent global CO2 emissions

Stiff fibers spun from slime

Converting carbon dioxide to carbon monoxide using water, electricity

Separating methane and CO2 will become more efficient

TECH SPACE
Liquid metal brings soft robotics a step closer

Samsung's revamped Bixby takes on Amazon Alexa

Emma the robot masseuse gets to work in Singapore

US spacewalkers repair aging ISS robotic arm

TECH SPACE
Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

First floating wind farm starts operation in Scotland

TECH SPACE
Delphi boosts self-driving efforts with $400 mn deal for nuTonomy

Study: Millions of miles of planned roads shouldn't be built

Singapore to freeze number of cars on its roads

Oklahoma frustrated by ruling against alternative vehicle fees

TECH SPACE
Electronic entropy enhances water splitting

Scientists solve a magnesium mystery in rechargeable battery performance

Ames UConn team discover superconductor with bounce

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

TECH SPACE
MATRIX pitched as a game changer for used fuel dry storage

South Korea to push ahead with nuclear power plants

AREVA NP awarded contract for safety upgrades in seven reactors

AREVA NP installs a system allowing flexible electricity generation at Goesgen nuclear power plant

TECH SPACE
Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

TECH SPACE
Tropical tree roots represent an underappreciated carbon pool

Conservation cutbacks put Brazil's Amazon animals at risk

More trees, better farming could slash carbon emissions: study

Carbon feedback from forest soils will accelerate global warming









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.