Solar Energy News  
TIME AND SPACE
Turning entanglement upside down
by Staff Writers
Innsbruck, Austria (SPX) Jun 19, 2018

file illustration only

Quantum entanglement forms the heart of the second quantum revolution: it is a key characteristic used to understand forms of quantum matter, and a key resource for present and future quantum technologies. Physically, entangled particles cannot be described as individual particles with defined states, but only as a single system.

Even when the particles are separated by a large distance, changes in one particle also instantaneously affect the other particle(s). The entanglement of individual particles - whether photons, atoms or molecules - is part of everyday life in the laboratory today.

In many-body physics, following the pioneering work of Li and Haldane, entanglement is typically characterized by the so-called entanglement spectrum: it is able to capture essential features of collective quantum phenomena, such as topological order, and at the same time, it allows to quantify the 'quantumness' of a given state - that is, how challenging it is to simply write it down on a classical computer.

Despite its importance, the experimental methods to measure the entanglement spectrum quickly reach their limits - until today, these spectra have been measured only in few qubits systems. With an increasing number of particles, this effort becomes hopeless as the complexity of current techniques increases exponentially.

"Today it is very hard to perform an experiment beyond few particles that allows us to make concrete statements about entanglement spectra," explains Marcello Dalmonte from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy.

Together with Peter Zoller and Benoit Vermersch from the Department of Theoretical Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences, he has now found a surprisingly simple way to investigate quantum entanglement directly.

The physicists turn the concept of quantum simulation upside down by no longer simulating a certain physical system in the quantum simulator, but directly simulating its entanglement Hamiltonian operator, whose spectrum of excitations immediately relates to the entanglement spectrum.

Demonstrate quantum advantage
"Instead of simulating a specific quantum problem in the laboratory and then trying to measure the entanglement properties, we propose simply turning the tables and directly realizing the corresponding entanglement Hamiltonian, which gives immediate and simple access to entanglement properties, such as the entanglement spectrum" explains Marcello Dalmonte.

"Probing this operator in the lab is conceptually and practically as easy as probing conventional many-body spectra, a well-established lab routine."

Furthermore, there are hardly any limits to this method with regard to the size of the quantum system. This could also allow the investigation of entanglement spectra in many-particle systems, which is notoriously challenging to address with classical computers.

Dalmonte, Vermersch and Zoller describe the radically new method in a current paper in Nature Physics and demonstrate its concrete realization on a number of experimental platforms, such as atomic systems, trapped ions and also solid-state systems based on superconducting quantum bits.

Research Report: Quantum simulation and spectroscopy of entanglement Hamiltonian. Marcello Dalmonte, Benoit Vermersch, Peter Zoller. Nature Physics 2018 DOI: 10.1038/s41567-018-0151-7


Related Links
University of Innsbruck
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Evidence for a new property of quantum matter revealed
Baltimore MD (SPX) Jun 19, 2018
A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team of scientists reports. The team proved that a particular quantum material can demonstrate electrical dipole fluctuations - irregular oscillations of tiny charged poles on the material - even in extremely cold conditions, in the neighborhood of minus 450 degrees Fahrenheit. The material, first synthesized 20 years ago, is called k-(BEDT-TTF)2Hg(SCN)2 Br. It is derived from organic compound ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Orange, tea tree and eucalyptus oils sweeten diesel fumes

Critical plant gene takes unexpected detour that could boost biofuel yields

'Tricking' bacteria into hydroxylating benzene

How to suck carbon dioxide from the sky for fuels and more

TIME AND SPACE
Robots learn by checking in on team members

Future robots need no motors

A fast, low-voltage actuator for soft and wearable robotics

'iPal' robot companion for China's lonely children

TIME AND SPACE
New wind turbines are even efficient in low winds

Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

TIME AND SPACE
Audi boss arrested in diesel probe

Fleet of autonomous boats could service cities to reduce road traffic

MIT study helps driverless cars change lanes more like humans do

Germany hits Mercedes with mass diesel recall

TIME AND SPACE
Rutgers-led research could lead to more efficient electronics

Sodium- and potassium-based batteries hold promise for cheap energy storage

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery

The first experimental discovery in the world of the propagation of plasma turbulence

TIME AND SPACE
Creating a new composite fuel for new-generation fast reactors

Nuclear power shutdowns won't spike power prices

Seawater yields first grams of yellowcake

Framatome and the EPR reactor: a robust history and the passion it takes to succeed

TIME AND SPACE
Hong Kong consortium makes $9.8 bn bid for Australia's APA

'Carbon bubble' coming that could wipe trillions from the global economy

Trump readies new plan to aid coal and nuclear power

Carbon dioxide emissions drop from U.S. power sector

TIME AND SPACE
'Shocking' die-off of Africa's oldest baobabs

New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.