Solar Energy News  
TECH SPACE
Twisted X-rays unravel the complexity of helical structures
by Staff Writers
Chester, UK (SPX) Feb 11, 2016


A twisted wave with angular, axial and radial wavenumbers (a, b, ?) is shown. Image courtesy Justel et al. For a larger version of this image please go here.

Since the discovery of the diffraction of X-rays by crystals just over 100 years ago, X-ray diffraction as a method of structure determination has dominated structural research in materials science and biology. However, many of the most important materials whose structures remain unknown do not readily crystallize as three-dimensional periodic structures.

Crystallization can also alter the properties of the material to be studied: a crystallized protein may not function in the way that it would in its natural state, and confining nanostructures such as carbon nanotubes within a crystal lattice can also alter their behaviour.

In the March issue of Acta Crystallographica Section A, Justel, Friesecke and James propose a new method for studying these kinds of structures, using twisted X-rays.

They show that the key to obtaining diffraction data from non-crystalline but symmetric structures, such as helices, lies in matching the symmetry of the incoming radiation to the symmetry of the structure to be studied.

The interesting resonance effects of twisted waves with helical structures suggests that this could be a promising new method for structure determination: send twisted X-rays onto a helical structure, align the waves, the structure and the detector axially, and the outgoing radiation shows sharp, discrete peaks as the incoming wavelength and the amount of twist are varied.

Structure prediction from the diffraction pattern then works in exactly the same way as in the case of crystals. Using computer simulations, the authors show that the accuracy of a structure determined using twisted X-rays would be comparable to that obtained by 'classical' X-ray methods.

Remarkably, the method can applied to some of the most important structures in biology and a striking number of the structures that are emerging in nanoscience: buckyballs and many fullerenes, the parts of many viruses, actin, carbon nanotubes (all chiralities), graphene and a large collection of other two-dimensional structures, such as the currently important structures of black phosphorus and the dichalcogenides.

Now someone just has to design the machine to put the twist into the X-rays!

Research Paper: Bragg-von Laue diffraction generalized to twisted X-rays


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
International Union of Crystallography
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
A deep look into a single molecule
Braunschweig, Germany (SPX) Feb 10, 2016
The interaction of thermal energy from the environment with motional degrees of freedom is well known and often referred to as Brownian motion (also thermal motion). But in the case of polar molecules, the internal degrees of freedom - in particular the rotational quantum state - are also influenced by the thermal radiation. So far, the detection of the rotational state was only possible by dest ... read more


TECH SPACE
Researchers create synthetic biopathway to turn agriculture waste into 'green' products

Iowa State engineers develop hybrid technology to create biorenewable nylon

Spain's Abengoa submits plan to avoid bankruptcy: source

UCR research advances oil production in yeast

TECH SPACE
Chip could bring deep learning to mobile devices

Arlington Capital Partners buying iRobot business unit

Cockroach inspires robot that squeezes through cracks

Russia launches ambitious cosmic robotics project

TECH SPACE
Germany aims to build wind energy reputation

Offshore U.K. to host world's largest wind farm

Mechanical trees generate power as they sway in the wind

Enormous blades could lead to more offshore energy in US

TECH SPACE
Toyota says net profit jumps to $16 bn, raises FY forecast

Chinese market electrifying for 'green' cars

New algorithm improves speed and accuracy of pedestrian detection

SUVs rev up at Delhi auto show despite pollution crackdown

TECH SPACE
From allergens to anodes: Pollen derived battery electrodes

Clean energy from water

Creation of Jupiter interior, a step towards room temp superconductivity

Cornell researchers create first self-assembled superconductor

TECH SPACE
China drafts nuclear safety law

New York Power Plant Leaking Radioactive Water

Sweden's Vattenfall results nuked by atomic energy tax

India Connects First Unit of Kudankulam NPP to National Electric Grid

TECH SPACE
Online shopping about as "green" as a three dollar bill

Chinese utility makes major acquisition in German energy sector

Scientists say window to reduce carbon emissions is small

Germany says carbon emissions down sharply in 2014

TECH SPACE
Recovering tropical forests a sponge for CO2: study

Clemson scientist's research on tropical forests featured in the journal Nature

Cause for hope: Secondary tropical forests put on weight fast

Study documents drought's impact on redwood forest ferns









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.