Solar Energy News  
TIME AND SPACE
Two Stars, Three Dimensions, and Oodles of Energy
by Staff Writers
Boston MA (SPX) Sep 27, 2017


This illustrated figure depicts the 3D model of the V745 Sco explosion. The blast wave is yellow, the mass ejected by the explosion is purple, and the disk of cooler material, which is mostly untouched by the effects of the blast wave, is blue. The cavity visible on the left side of the ejected material (see the labeled version) is the result of the debris from the white dwarf's surface being slowed down as it strikes the red giant.

For decades, astronomers have known about irregular outbursts from the double star system V745 Sco, which is located about 25,000 light-years from Earth. Astronomers were caught by surprise when previous outbursts from this system were seen in 1937 and 1989. When the system erupted on February 6, 2014, however, scientists were ready to observe the event with a suite of telescopes including NASA's Chandra X-ray Observatory.

V745 Sco is a binary star system that consists of a red giant star and a white dwarf locked together by gravity. These two stellar objects orbit so closely around one another that the outer layers of the red giant are pulled away by the intense gravitational force of the white dwarf. This material gradually falls onto the surface of the white dwarf. Over time, enough material may accumulate on the white dwarf to trigger a colossal thermonuclear explosion, causing a dramatic brightening of the binary called a nova. Astronomers saw V745 Sco fade by a factor of a thousand in optical light over the course of about 9 days.

Astronomers observed V745 Sco with Chandra a little over two weeks after the 2014 outburst. Their key finding was it appeared that most of the material ejected by the explosion was moving towards us.

To explain this, a team of scientists from the INAF-Osservatorio Astronomico di Palermo, the University of Palermo, and the Harvard-Smithsonian Center for Astrophysics constructed a three-dimensional (3D) computer model of the explosion, and adjusted the model until it explained the observations. In this model they included a large disk of cool gas around the equator of the binary caused by the white dwarf pulling on a wind of gas streaming away from the red giant.

The computer calculations showed that the nova explosion's blast wave and ejected material were likely concentrated along the north and south poles of the binary system. This shape was caused by the blast wave slamming into the disk of cool gas around the binary.

This interaction caused the blast wave and ejected material to slow down along the direction of this disk and produce an expanding ring of hot, X-ray emitting gas. X-rays from the material moving away from us were mostly absorbed and blocked by the material moving towards Earth, explaining why it appeared that most of the material was moving towards us.

In the figure showing the new 3D model of the explosion, the blast wave is yellow, the mass ejected by the explosion is purple, and the disk of cooler material, which is mostly untouched by the effects of the blast wave, is blue. The cavity visible on the left side of the ejected material (see the labeled version) is the result of the debris from the white dwarf's surface being slowed down as it strikes the red giant. An inset shows an optical image from the Siding Springs Observatory in Australia, with V745 Sco in the center.

An extraordinary amount of energy was released during the explosion, equivalent to about 10 million trillion hydrogen bombs. The authors estimate that material weighing about one tenth of the Earth's mass was ejected.

While this stellar-sized belch was impressive, the amount of mass ejected was still far smaller than the amount what scientists calculate is needed to trigger the explosion. This means that despite the recurrent explosions, a substantial amount of material is accumulating on the surface of the white dwarf. If enough material accumulates, the white dwarf could undergo a thermonuclear explosion and be completely destroyed. Astronomers use these so-called Type Ia supernovas as cosmic distance markers to measure the expansion of the universe.

The scientists were also able to determine the chemical composition of the material expelled by the nova. Their analysis of this data implies that the white dwarf is mainly composed of carbon and oxygen.

"Origin of Asymmetries in X-ray Emission Lines from the Blast Wave of the 2014 Outburst of Nova V745 Sco," S. Orlando, J. J. Drake and M. Miceli, 2017 Feb. 1, Monthly Notices of the Royal Astronomical Society

TIME AND SPACE
Researchers propose how the universe became filled with light
Iowa City IA (SPX) Aug 31, 2017
Soon after the Big Bang, the universe went completely dark. The intense, seminal event that created the cosmos churned up so much hot, thick gas that light was completely trapped. Much later--perhaps as many as one billion years after the Big Bang--the universe expanded, became more transparent, and eventually filled up with galaxies, planets, stars, and other objects that give off visible light ... read more

Related Links
Chandra X-Ray Center
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Green algae could hold clues for engineering faster-growing crops

Researchers discover unique property of critical methane-producing enzyme

New biomaterial could replace plastic laminates, greatly reduce pollution

Re-engineering biofuel-producing bacterial enzymes

TIME AND SPACE
Quantum machine learning

Sorting molecules with DNA robots

From self-folding robots to computer vision

Scientists create world's first 'molecular robot' capable of building molecules

TIME AND SPACE
French energy company to build wind power sector in India

Finding better wind energy potential with the new European Wind Atlas

Last of the 67 turbines for a British wind farm installed

Kimberly-Clark next U.S. company to draw more on renewables

TIME AND SPACE
In the future, roads could generate power from passing traffic

Carmakers face billions in European CO2 fines from 2021: study

Dockless bike-share hits US capital, following craze in China

Baidu announces $1.5 bln fund for autonomous driving

TIME AND SPACE
Corvus Energy wins contract to provide battery systems for hybrid fishing vessels

Graphene-wrapped nanocrystals make inroads towards next-gen fuel cells

UW shatters long-range communication barrier for near-zero-power devices

Researchers challenge status quo of battery commercialization

TIME AND SPACE
Against rising headwinds, UK pushes ahead with nuclear projects

Russia floats out powerful nuclear icebreaker

Russia's use and stockpiles of highly enriched uranium pose significant nuclear risks

Discovery could reduce nuclear waste by chemically reengineering molecules

TIME AND SPACE
SLAC-led project will use AI to prevent or minimize electric grid failures

Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

TIME AND SPACE
Brazil scraps bid to mine Amazon natural reserve

American oaks share a common northern ancestor

Forest fires are not limited to hot or temperate climates

Harvard report details the threats faced by New England forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.