Solar Energy News  
Two Unusual Older Stars Giving Birth To Second Wave Of Planets

The star BP Piscium (center), in the constellation Pisces. The green and red streaks are jets of gas shot from the star. The image was obtained using the 3-meter telescope at the University of California's Lick Observatory.
By Stuart Wolpert
Los Angeles CA (SPX) Jan 11, 2008
Hundreds of millions - or even billions - of years after planets would have initially formed around two unusual stars, a second wave of planetesimal and planet formation appears to be taking place, UCLA astronomers and colleagues believe.

"This is a new class of stars, ones that display conditions now ripe for formation of a second generation of planets, long, long after the stars themselves formed," said UCLA astronomy graduate student Carl Melis, who reported the findings today at the American Astronomical Society meeting in Austin, Texas.

"If we took a rocket to one of these stars and discovered there were two totally distinct ages for their planets and more minor bodies like asteroids, that would blow scientists' minds away," said Benjamin Zuckerman, UCLA professor of physics and astronomy and co-author of the research, which has not yet been published. "We're seeing stars with characteristics that have never been seen before."

The stars, which Melis says possess "amazing" properties for their age, are known as BP Piscium, in the constellation Pisces, and TYCHO 4144 329 2, in the constellation Ursa Major.

These two stars have many characteristics of very young stars, Melis said, including rapid accretion of gas, extended orbiting disks of dust and gas, a large infrared excess emission and, in the case of BP Piscium, jets of gas that are being shot into space. Planetesimals, like comets and asteroids, along with planets, form from the gas and dust particles that orbit young stars; planetesimals are small masses of rock or ice that merge to form larger bodies.

"With all these characteristics that match so closely with young stars, we would expect that our two stars would also be young," Melis said. "As we gathered more data, however, things just did not add up."

For example, because stars burn lithium as they get older, young stars should have large quantities of lithium. The astronomers found, however, that the spectroscopic signature of lithium in BP Piscium is seven times weaker than expected for a young star of its mass.

"There is no known way to account for this small amount of lithium if BP Piscium is a young star," Melis said. "Rather, lithium has been heavily processed, as appropriate for old stars. Other spectral measurements also indicate it is a much older star."

As seen from Earth, some 75 percent of BP Piscium's radiant energy is being converted by the dust particles into infrared light, and about 12 percent of TYCHO 4144 329 2's. These are unusually high amounts, which Melis described as "spectacular" in comparison to other stars that are known to be not-young.

TYCHO 4144 329 2 orbits a companion star that has a mass similar to that of our sun; a second generation of planets is not forming around this companion, which appears to be an ordinary old star in all respects. By studying this companion star, the astronomers have deduced that TYCHO 4144 329 2 is just 200 light-years from Earth - very close by astronomical standards. They do not know precise age of TYCHO 4144 329 2, or BP Piscium's age or distance from Earth.

The astronomers are continuing to study these stars with a variety of ground-based telescopes and with space-based observatories, including NASA's Hubble Space Telescope and Chandra X-ray Observatory, and they are searching for additional similar stars.

In addition to Melis and Zuckerman, co-authors include Inseok Song of NASA's Spitzer Science Center at the California Institute of Technology; David Meier, a Jansky fellow at the National Radio Astronomy Observatory; Marshall Perrin, a UCLA postdoctoral scholar in astronomy; Bruce Macintosh of UC Berkeley's Department of Astronomy; Christian Marois of Lawrence Livermore National Laboratory's Institute of Geophysics and Planetary Physics; Alycia Weinberger of the Carnegie Institution at Washington's Department of Terrestrial Magnetism; Joseph Rhee, a UCLA postdoctoral scholar in astronomy; James Graham, a UC Berkeley professor of astronomy; Joel Kastner of the Rochester Institute of Technology; Patrick Palmer of the University of Chicago's Department of Astronomy and Astrophysics; T. Forveille of France's Laboratoire d'Astrophysique de Grenoble; Eric Becklin, a UCLA professor of physics and astronomy; D.J. Wilner of the Harvard-Smithsonian Center for Astrophysics; T.S. Barman of the Lowell Observatory; Geoff Marcy, a UC Berkeley professor of astronomy; M.S. Bessell of the Australian National University's Research School of Astronomy and Astrophysics; and Stanimir Metchev, a UCLA postdoctoral scholar in astronomy.

Related Links
UCLA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Weird Object May Be Result Of Colliding Protoplanets
Austin TX (SPX) Jan 11, 2008
Something bizarre orbiting a young, failed star 170 light-years from Earth may be the progeny of two protoplanets that collided and merged, astronomers announced at the American Astronomical Society meeting in Austin, Texas, today. Given its hotter-than-expected temperature, dim luminosity, young age and location, the orbiting object, known as 2M1207B, should be a physical impossibility, scientists say.







  • Egypt names site of first nuclear power reactor
  • Britain approves new nuclear reactors, to Green fury
  • Nuclear power gains steam in energy race
  • Groups lobby for restrictions on US-India nuclear deal

  • A Warming Climate Can Support Glacial Ice
  • Global warming could make Australia's outback tougher: study
  • Japan temperatures could rise five degrees by 2100: panel
  • Electric Sand Findings Could Lead To Better Climate Models

  • Overgrazing Accelerating Soil Erosion In Northern Mexico
  • Australia looks to GM crops after scorching 2007
  • Fisheries Should Be Regarded As A Part Of The Maritime Environment
  • Illegal land grabs in China threatening food supplies: minister

  • Drought driving deadly snakes into Australian cities: official
  • 480-Million-Year-Old Fossil Sheds Light On 150-Year-Old Paleontological Mystery
  • Humans Have Caused Profound Changes In Caribbean Coral Reefs
  • Elephants outsmarting humans on Indonesia's Sumatra: report

  • ASRC Aerospace Contributes To NASA Constellation System
  • Japan's Mitsubishi Heavy aims to cut rocket launch costs: company
  • 100 Years Of German Aerospace
  • NASA J-2X Powerpack Testing Commences At Stennis Space Center

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • Japanese satellite flops at map-making: official
  • SERVIR: NASA Lends A Hand In Central America
  • ISRO To Launch Carto-2A Satellite In January 2008
  • Outside View: Arctic satellite balance

  • Helicopter silencers used to turn all surfaces stereo
  • In world of convergence, mini-TVs get legs
  • Pocket-sized gadgets get picture projection power
  • Smaller Is Stronger - Now Scientists Know Why

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement