Solar Energy News  
UA Astronomers Will Trace Planet Formation With Neon

"Out of the Dust, a Planet is Born" - In this artist's conception, a possible newfound planet spins through a clearing in a nearby star's dusty, planet-forming disk. (Image credit: NASA/JPL/R. Hurt, SSC)
By Lori Stiles
Tuscon AZ (SPX) Sep 13, 2007
Astronomers have observed neon in disks of dust and gas swirling around sunlike stars for the first time. University of Arizona astronomers who collaborated in the observations say that neon could show which stars retain their surrounding dust-and-gas disks needed to form planets and which stars might already have formed planets. "When I saw the neon, I couldn't believe it. I was just amazed," said UA Steward Observatory astronomer Ilaria Pascucci.

"We were not expecting to see neon around low-mass stars like our sun."

Pascucci is a co-investigator on a Spitzer Space Telescope Legacy project called "Formation and Evolution of Planetary Systems, known as FEPS, headed by Steward Observatory's Michael R. Meyer. The project used an infrared spectrometer to conduct a sensitive search for planet-forming gas around 35 young, solar analog stars.

Neon showed up in disks of four sunlike stars in Spitzer's FEPS data. The discovery was a surprise because "we didn't realize that solar analog stars could radiate enough high-energy (X-ray and ultraviolet) light to ionize neon," Pascucci said.

"Astronomers have used ionized neon for years to study massive star formation, novae and the galactic center, all places where the environment is energetic and harsh, so it was a surprise to find this neon emission from planet-forming stars like the sun," Meyer said. "It serves as a valuable reminder that the environment in which the planets formed was harsh, too, in a way. And it could turn out to be an important tracer of remnant gas in circumstellar disks - a kind of 'vacancy/no vacancy' sign for planets."

Neon -- a gas commonly used in outdoor advertising signs since the 1920s -- is one of the few chemical elements that doesn't chemically react to form molecules or condense into solid particles. There's not much of it in Earth's atmosphere, only about 18 parts per million. Nor is it plentiful in gas whirling around stars, Pascucci said.

But when a neon atom absorbs high-energy X-ray or ultraviolet light, it "ionizes," or becomes electrically charged, and gives off infrared light at a specific wavelength. The Spitzer Space Telescope saw the spectral line at 12.8 microns, one of neon's infrared signatures.

So although neon isn't an abundant gas, it is pure, and it radiates infrared light at a specific wavelength when it ionizes, making it useful for tracing planet formation.

Most gas in the disk surrounding a star is swept up by the central star itself. Much of the remaining gas becomes so hot and energetic that it "photoevaporates," or escapes the star system's powerful gravity and evaporates into space. Scientists suspect that if too much gas photoevaporates too quickly, a star has missed its chance to form gas-giant planets.

Scientists believe that planets form when dust particles in the disk around a star begin to stick together and continue to grow by clumping, or "accreting," over millions of years. Some of these planetary building blocks smash together, eventually creating rocky planets like Earth or the cores of gas-giant planets like Jupiter. Ever-larger planetary cores exert greater gravity. If a core becomes massive enough, its gravity becomes powerful enough to pull in gas from the protoplanetary disk, creating an atmosphere.

Gas in the disk may also play a crucial role in making planets suitable for life, Pascucci said. The gas may help to circularize the orbits of planets as they form, as well as provide atmospheres for rocky Earthlike planets and gas-giant planets. Both the orbit of a planet and its atmosphere play an important role in stabilizing climate, a big factor in whether complex life can form and survive.

Astronomers may be able to trace the gas that is needed to circularize the orbits of Earthlike planets in the terrestrial planet region with neon, she added.

Pascucci and the FEPS team published their results in the July 2007 edition of Astrophysical Journal.

Pascucci will make future observations that use neon to track gas content in disks around young stars at different stages of planet formation using NASA's Spitzer Space Telescope and the Very Large Telescope, known as the VLT, in Chile.

"We'll use the Spitzer to look for neon in disks around slightly older systems than we've studied so far," Pascucci said. "Because neon is tracing a very tiny amount of gas mass, we want to see how the gas dissipates with time."

Some of the gas lines are strong enough that astronomers will be able to see the spectra from the ground with the VLT. Pascucci and her colleagues will study 15 candidate objects using the VLT in February 2008. The ground-based telescope is far less sensitive to infrared light than is Spitzer, but it is 50 times higher velocity resolution than the space telescope. By clocking the speed of the gas, the VLT should be able to locate where the gas is within a disk.

"The two studies are very complementary," Pascucci said. "Once we know for a sample of stars where the gas emission is coming from (using the VLT), we then can extrapolate to other stars which Spitzer can see.

"Nobody thought about observing these types of lines from the ground before they were detected by Spitzer. At least, I wasn't thinking about detecting neon," she added.

Related Links
University of Arizona
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Water Vapor Seen Raining Down On Young Star System
Pasadena CA (JPL) Sep 03, 2007
NASA's Spitzer Space Telescope has detected enough water vapor to fill the oceans on Earth five times inside the collapsing nest of a forming star system. Astronomers say the water vapor is pouring down from the system's natal cloud and smacking into a dusty disk where planets are thought to form. The observations provide the first direct look at how water, an essential ingredient for life as we know it, begins to make its way into planets, possibly even rocky ones like our own.







  • North Korea gives experts full access to nuclear facilities: US
  • Iranian FM, Russian nuclear chief hold talks on Bushehr
  • Next Thai government urged to pursue nuclear project
  • UN nuclear watchdog reviewing Iran file

  • Slash global meat consumption to tackle climate change: Lancet paper
  • Air pollution causes bigger, more destructive hail
  • Mediterranean's rich marine life under threat: study
  • China leads charge against Australian climate pact

  • Transgenic Maize Is More Susceptible To Aphids
  • Pig Study Sheds New Light On The Colonisation Of Europe By Early Farmers
  • APEC leaders set to discuss China food safety
  • Norway: Noah's Ark of seed samples tucked into Arctic mountainside

  • 'Global extinction crisis' predicted by conservation group
  • Auto Immune Response Creates Barrier To Fertility; Could Be A Step In Speciation
  • Migrating Squid Drove Evolution Of Sonar In Whales And Dolphins
  • Height Or Flight

  • Northrop Grumman KEI Team Completes Fourth Rocket Motor Test
  • Chinese Astronauts Test Traditional Chinese Medicines In Space
  • Ball Aerospace Presents Proposal For Ares I Crew Launch Vehicle Instrument Unit Avionics
  • Boeing Selected To Build NASA's Upper Stage For Ares I

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • New Faraway Sensors Warn Of Emerging Hurricane's Strength
  • Key Sensor For Northrop Grumman NPOESS Program Passes Critical Structural Test
  • Air France And ESA Join To Offer Passengers Unique View Of Voyage
  • NASA Scientist Treks To Burning Man Festival

  • Engineers Rescue Aging Satellites And Save Millions
  • Russian Satellites: Smaller, Lighter, Cheaper
  • INSAT-4CR Raised To A Perigee Of 15994 Kilometers
  • Sharp unveils ultra-sensitive touch-screen LCD

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement