. Solar Energy News .




.
CLIMATE SCIENCE
UA scientists find evidence of Roman period megadrought
by Staff Writers
Tucson AZ (SPX) Nov 09, 2011

Dendrochronologists extract a small, pencil-shaped sample of wood from a tree with a tool called an increment borer. The tiny hole left in the tree's trunk quickly heals as the tree continues to grow. Credit: Daniel Griffin/Laboratory of Tree-Ring Research.

Almost nine hundred years ago, in the mid-12th century, the southwestern U.S. was in the middle of a multi-decade megadrought. It was the most recent extended period of severe drought known for this region. But it was not the first.

The second century A.D. saw an extended dry period of more than 100 years characterized by a multi-decade drought lasting nearly 50 years, says a new study from scientists at the University of Arizona.

UA geoscientists Cody Routson, Connie Woodhouse and Jonathan Overpeck conducted a study of the southern San Juan Mountains in south-central Colorado. The region serves as a primary drainage site for the Rio Grande and San Juan rivers.

"These mountains are very important for both the San Juan River and the Rio Grande River," said Routson, a doctoral candidate in the environmental studies laboratory of the UA's department of geosciences and the primary author of the study, which is upcoming in Geophysical Research Letters.

The San Juan River is a tributary for the Colorado River, meaning any climate changes that affect the San Juan drainage also likely would affect the Colorado River and its watershed. Said Routson: "We wanted to develop as long a record as possible for that region."

Dendrochronology is a precise science of using annual growth rings of trees to understand climate in the past. Because trees add a normally clearly defined growth ring around their trunk each year, counting the rings backwards from a tree's bark allows scientists to determine not only the age of the tree, but which years were good for growth and which years were more difficult.

"If it's a wet year, they grow a wide ring, and if it's a dry year, they grow a narrow ring," said Routson. "If you average that pattern across trees in a region you can develop a chronology that shows what years were drier or wetter for that particular region."

Darker wood, referred to as latewood because it develops in the latter part of the year at the end of the growing season, forms a usually distinct boundary between one ring and the next. The latewood is darker because growth at the end of the growing season has slowed and the cells are more compact.

To develop their chronology, the researchers looked for indications of climate in the past in the growth rings of the oldest trees in the southern San Juan region. "We drove around and looked for old trees," said Routson.

Literally nothing is older than a bristlecone pine tree: The oldest and longest-living species on the planet, these pine trees normally are found clinging to bare rocky landscapes of alpine or near-alpine mountain slopes. The trees, the oldest of which are more than 4,000 years old, are capable of withstanding extreme drought conditions.

"We did a lot of hiking and found a couple of sites of bristlecone pines, and one in particular that we honed in on," said Routson.

To sample the trees without damaging them, the dendrochronologists used a tool like a metal screw that bores a tiny hole in the trunk of the tree and allows them to extract a sample, called a core. "We take a piece of wood about the size and shape of a pencil from the tree," explained Routson.

"We also sampled dead wood that was lying about the land. We took our samples back to the lab where we used a visual, graphic technique to match where the annual growth patterns of the living trees overlap with the patterns in the dead wood. Once we have the pattern matched we measure the rings and average these values to generate a site chronology."

"In our chronology for the south San Juan mountains we created a record that extends back 2,200 years," said Routson. "It was pretty profound that we were able to get back that far."

The chronology extends many years earlier than the medieval period, during which two major drought events in that region already were known from previous chronologies.

"The medieval period extends roughly from 800 to 1300 A.D.," said Routson. "During that period there was a lot of evidence from previous studies for increased aridity, in particular two major droughts: one in the middle of the 12th century, and one at the end of the 13th century."

"Very few records are long enough to assess the global conditions associated with these two periods of Southwestern aridity," said Routson. "And the available records have uncertainties."

But the chronology from the San Juan bristlecone pines showed something completely new:

"There was another period of increased aridity even earlier," said Routson. "This new record shows that in addition to known droughts from the medieval period, there is also evidence for an earlier megadrought during the second century A.D."

"What we can see from our record is that it was a period of basically 50 consecutive years of below-average growth," said Routson. "And that's within a much broader period that extends from around 124 A.D. to 210 A.D. - about a 100-year-long period of dry conditions."

"We're showing that there are multiple extreme drought events that happened during our past in this region," said Routson.

"These megadroughts lasted for decades, which is much longer than our current drought. And the climatic events behind these previous dry periods are really similar to what we're experiencing today."

The prolonged drought in the 12th century and the newly discovered event in the second century A.D. may both have been influenced by warmer-than-average Northern Hemisphere temperatures, Routson said: "The limited records indicate there may have been similar La Nina-like background conditions in the tropical Pacific Ocean, which are known to influence modern drought, during the two periods."

Although natural climate variation has led to extended dry periods in the southwestern U.S. in the past, there is reason to believe that human-driven climate change will increase the frequency of extreme droughts in the future, said Routson.

In other words, we should expect similar multi-decade droughts in a future predicted to be even warmer than the past.

Related Links
University of Arizona
Climate Science News - Modeling, Mitigation Adaptation




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CLIMATE SCIENCE
Human-caused climate change a major factor in more frequent Mediterranean droughts
Washington DC (SPX) Nov 02, 2011
Wintertime droughts are increasingly common in the Mediterranean region, and human-caused climate change is partly responsible, according to a new analysis by NOAA scientists and colleagues at the Cooperative Institute for Research in Environmental Sciences (CIRES). In the last 20 years, 10 of the driest 12 winters have taken place in the lands surrounding the Mediterranean Sea. "The magni ... read more


CLIMATE SCIENCE
A Stable Renewable Fuel Standard Is Needed to Meet Biofuel Production Goals

Mission Increases Jatropha Oil Supply Completing the 2011 Planting Season

Wood biofuel could be a competitive industry by 2020

Giant King Grass Targeted as Fuel for Planned 90MW Biomass Power Plant in Thailand

CLIMATE SCIENCE
Mask-bot: A robot with a human face

NASA Robotic Lander Test Flight Will Aid in Future Lander Designs

Is that a robot in your suitcase?

Look, no hands -- robot uses gecko power to climb walls

CLIMATE SCIENCE
Mortenson Construction Builds Its Fifth Wind Facility In Illinois

Chinese Wind Market To Overtake Germany by 2018, Second Only to the UK

Huhne slams green energy 'naysayers'

Wind farm development can be powerful, as long as proper design is implemented

CLIMATE SCIENCE
China auto sales down 1.1% in October

Toyota profits fall, scraps forecast on Thai floods

GM's cloud over Chinese Saab rescue 'regrettable': Sweden

GM would cut business with Chinese-owned Saab

CLIMATE SCIENCE
Security risks curb Libyan oil recovery

US climate study group gets big oil funds

Building a full-scale model of a trapped oil reservoir in a laboratory

Green Heat: GE Pulls Power Out of Hot Air

CLIMATE SCIENCE
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure

CLIMATE SCIENCE
Individual CO2 emissions decline in old age

Australia approves carbon tax

Greenpeace protests 'climate killer' coal plant in S.Africa

Creating markets to pay for public good offer promise, peril

CLIMATE SCIENCE
Holm oaks will gain ground in northern forests due to climate change

Climate change causing massive movement of tree species across the West

Tropical forests are fertilized by air pollution

DR Congo seeks to keep its huge green lung breathing


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement