Subscribe free to our newsletters via your
. Solar Energy News .




FARM NEWS
UCSB scientists examine effects of manufactured nanoparticles on soybean crops
by Staff Writers
Santa Barbara CA (SPX) Aug 23, 2012


Pictured are soybean stem, leaves, bean pods, and roots. The roots contain nodules where bacteria accumulate and convert atmospheric nitrogen into ammonium, which fertilizes the plant. Credit: Patricia Holden.

Sunscreens, lotions, and cosmetics contain tiny metal nanoparticles that wash down the drain at the end of the day, or are discharged after manufacturing. Those nanoparticles eventually end up in agricultural soil, which is a cause for concern, according to a group of environmental scientists that recently carried out the first major study of soybeans grown in soil contaminated by two manufactured nanomaterials (MNMs).

The team was led by scientists at UC Santa Barbara's Bren School of Environmental Science and Management. The team is also affiliated with the UC Center for Environmental Implications of Nanotechnology (CEIN), a $24 million collaboration based at UCLA, with researchers from UCSB, UC Davis, UC Riverside, University of Texas at El Paso, Columbia University, and other national and international partners. The results of the study are published this week in the Proceedings of the National Academy of Sciences.

"Our society has become more environmentally aware in the last few decades, and that results in our government and scientists asking questions about the safety of new types of chemical ingredients," said senior author Patricia Holden, a professor with the Bren School. "That's reflected by this type of research."

She explained that the research, which is funded by the National Science Foundation (NSF) and the U.S. Environmental Protection Agency (EPA), is helping to discover potential environmental implications of a new industry that includes nanomaterials. The ultimate goal is to help find more environmentally compatible substitutes, Holden said.

Soybean was chosen for the study due to its importance as a food crop - it is the fifth largest crop in global agricultural production and second in the U.S. - and because it is vulnerable to MNMs. The findings showed that crop yield and quality are affected by the addition of MNMs to the soil.

The scientists studied the effects of two common nanoparticles, zinc oxide and cerium oxide, on soybeans grown in soil in greenhouses. Zinc oxide is used in cosmetics, lotions, and sunscreens. Cerium oxide is used as an ingredient in catalytic converters to minimize carbon monoxide production, and in fuel to increase fuel combustion. Cerium can enter soil through the atmosphere when fuel additives are released with diesel fuel combustion.

The zinc oxide nanoparticles may dissolve, or they may remain as a particle, or re-form as a particle, as they are processed through wastewater treatment. At the final stage of wastewater treatment there is a solid material, called biosolids, which is applied to soils in many parts of the U.S. This solid material fertilizes the soil, returning nitrogen and phosphorus that are captured during wastewater treatment. This is also a point at which zinc oxide and cerium oxide can enter the soil.

The scientists noted that the EPA requires pretreatment programs to limit direct industrial metal discharge into publicly owned wastewater treatment plants. However, the research team conveyed that "MNMs - while measurable in the wastewater treatment plant systems - are neither monitored nor regulated, have a high affinity for activated sludge bacteria, and thus concentrate in biosolids."

The authors pointed out that soybean crops are farmed with equipment powered by fossil fuels, and thus MNMs can also be deposited into the soil through exhaust.

The study showed that soybean plants grown in soil that contained zinc oxide bioaccumulated zinc; they absorbed it into the stems, leaves, and beans. Food quality was affected, although it may not be harmful to humans to eat the soybeans if the zinc is in the form of ions or salts, in the plants, according to Holden.

In the case of cerium oxide, the nanoparticles did not bioaccumulate, but plant growth was stunted. Changes occurred in the root nodules, where symbiotic bacteria normally accumulate and convert atmospheric nitrogen into ammonium, which fertilizes the plant. The changes in the root nodules indicate that greater use of synthetic fertilizers might be necessary with the buildup of MNMs in the soil.

Holden commented on the likelihood of high concentrations of these nanoparticles in agriculture: "There could be hotspots, places where you have accumulation, including near manufacturing sites where the materials are being made, or if there are spills. We have very limited information about the quantity or state of these synthetic nanomaterials in the environment right now. We know they're being used in consumer goods, and we know they're going down the drain."

First author John H. Priester is a staff scientist in the Holden lab at UCSB. Other co-authors from UC CEIN are Yuan Ge, Randall E. Mielke, Allison M. Horst, Shelly Cole Moritz, Roger M. Nisbet, Joshua P. Schimel, Jose A. Hernandez-Viezcas, Lijuan Zhao, and Jorge L. Gardea-Torresdey. Co-authors Katherine Espinosa and Reid G. Palmer are affiliated with Iowa State University; Jeff Gelb is affiliated with Xradia Corporation; and Sharon L. Walker is with UC Riverside. NASA/JPL-Caltech, the USDA, and The University of Texas at El Paso were substantially involved in the research.

.


Related Links
University of California - Santa Barbara
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Electrifying success in raising antioxidant levels in sweet potatoes
Philadelphia PA (SPX) Aug 22, 2012
Already ranked by some as number one in nutrition among all vegetables, the traditional sweet potato can be nutritionally supercharged ? literally ? with a simple, inexpensive electric current treatment that increases its content of healthful polyphenols or antioxidants by 60 percent, scientists said here today. Their report on the first electrical enhancement of sweet potatoes, a dietary ... read more


FARM NEWS
Warning issued for modified algae

Genetically Engineered Algae For Biofuel Pose Potential Risks That Should Be Studied

Argentina unhappy over EU biofuels curbs

New biorefinery finds treasure in Starbucks' spent coffee grounds and stale bakery goods

FARM NEWS
Soft robots, in color

NASA Historic Test Stands Make Way for New Reusable Robotic Lander Neig

Dextrous robotic hand gets thumbs up

The first robot that mimics the water striders' jumping abilities

FARM NEWS
Maximum Protection against Dust; Minimal Effort

US Wind Power Market Riding a Wave That Is Likely to Crest in 2012

Wind farms: A danger to ultra-light aircraft?

Off-shore wind power project considered

FARM NEWS
China's Geely H1 profit rises 9% as exports surge

Germans prefer bigger engines: study

US launches test of Wi-Fi to prevent car accidents

American CEO of Czech truck-maker charged in graft case

FARM NEWS
Canada's Africa Oil increases estimates

Chavez unveils $130 billion oil expansion

Teaching a microbe to make fuel

The Building as an Energy Storage Device

FARM NEWS
Japan press mixed on PM meet with anti-nuclear camp

BHP Billiton scraps mega mine expansion

Report warns of India nuclear power safety

Japan PM meets anti-nuclear demonstrators

FARM NEWS
Serbia institutes energy public tenders

Northrop Grumman Receives Highest Assurance for Accuracy of Its Greenhouse Gas Emissions Inventory

US carbon emissions in surprise drop

Rio+20: A Move Towards More Sustainable Transportation

FARM NEWS
Myanmar in deforestation crisis

Widespread local extinctions in tropical forest 'remnants'

Marine research in the Brazilian rain forest

Thai forces 'kill 38 Cambodian loggers in six months'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement