Solar Energy News  
CHIP TECH
UNIST researchers develop silicon chip-based quantum photonic devices
by Staff Writers
Ulsan, South Korea (SPX) Jan 02, 2018


This is a schematic of the integrated InP nanobeam and silicon waveguide. In the lower image this is a scanning electron microscope image of the fabricated nanobeam that is suspended by thin tethers that attach it to the bulk substrate.

An international team of researchers, affiliated with UNIST has presented a core technology for quantum photonic devices used in quantum information processing. They have proposed combining of quantum dots for generating light and silicon photonic technologies for manipulating light on a single device.

This breakthrough has been led by Professor Je-Hyung Kim in the School of Natural Science at UNIST in collaboration with Professor Edo Waks and a group of researchers at the University of Maryland, United States.

In this study, the research team demonstrated the integration of silicon photonic devices with a solid-state single photon emitter. We use a hybrid approach that combines silicon photonic waveguides with InAs/InP quantum dots that act as efficient sources of single photons at telecom wavelengths spanning the O-band and C-band.

In classical computing, a bit is a single piece of information that can exist in two states - 1 or 0. Quantum computers uses quantum bits that can occupy 0, 1, or a a superposition that can be both at the same time. Although there are several potentially fruitful approaches exist to quantum information processing based on a variety of quantum technologies, including atom, light, and superconducting devices.

However, the future of quantum computing, like the quantum state itself, still remains uncertain. Professor Kim focuses on the quantum information processing, using light. This is because quantum bits can be implemented using the polarized state of light, its duration, and the route information, similar to electron spins.

A recently developed quantum light source exhibits the characteristics of quantum physics, including the superposition, quantum entanglement, and no-cloning theorem. This has enabled innovative application technologies, such as quantum simulators, quantum state transfer, and quantum cryptography.

However, in order to commercialize the technologies used for the actual quantum information processing technology, it is necessary to perform quantum optics experiments directly on the photonic device. According to the research team, such innovation could be the precursor for quantum circuits, which are expected to play a large role in the future of quantum computers and communication.

"In order to build photon-based integrated quantum optical devices, it is necessary to produce as many quantum light sources as possible in a single chip," says Professor Kim. "Through this study, we have proposed the basic form of quantum optical devices by producing highly effective quantum light source with quantum dots and creating the pathway to manipulate light with the use of silicon substrates."

Quantum dots are ultrafine particles or nanocrystals of a semiconductor material with fiameters in the range of 2 to 10 nanometers (A nanometer is one billionth of a meter). In general, quantum dots take the form of compounds.

However, as the size decreases, they begin to exhibit discontinuous energy structure, which results in having similar properties to the light emitted by atoms. Although quantum dots have been used successfully as highly efficient single-photon sources, they had difficulty controlling light.

In the study, the research team demonstrated the integration of silicon photonic devices with a solid-state single photon emitter. Here, they used a hybrid approach that combines silicon photonic waveguides with InAs/InP quantum dots that act as efficient sources of single photons at telecom wavelengths spanning the O-band and C-band.

Then, they removed the quantum dots via a pick-and-place procedure with a microprobe tip combined with a focused ion beam and scanning electron microscope. This technique allowed transferring of tapered InP nanobeams containing InAs quantum dots onto a silicon waveguide with nanometer-scale precision.

"This integration opens up the possibility to leverage the highly advanced photonics capabilities developed in silicon to control and route nonclassical light from on-demand single photon sources," the research team notes. "In addition, the fabricated devices operate at telecom wavelengths and can be electrically driven, which are useful for fiber-based quantum communication."

The quantum optical device, developed by the research team has successfully transferred the emission from the quantum dots along the silicon photonic circuits with high efficiency. Using this, they also successfully incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement.

"Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons," says Professor Kim.

Je-Hyung Kim et al., "Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip," (2017), Nano Letters.

CHIP TECH
Revolutionizing electronics using Kirigami
Toyohashi, Japan (SPX) Dec 18, 2017
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed an ultrastretchable bioprobe using Kirigami designs. The Kirigami-based bioprobe enables one to follow the shape of spherical and large deformable biological samples such as hear ... read more

Related Links
Ulsan National Institute of Science and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NREL develops novel method to produce renewable acrylonitrile

Microbes help turn Greek yogurt waste into fuel

Bristol scientists turn beer into fuel

NREL research finds a sweet spot for engineering better cellulose-degrading enzymes

CHIP TECH
Lockheed Martin and NEC to Enhance Satellites, Space Travel with Artificial Intelligence

Engineers program tiny robots to move, think like insects

Not Your Grandpa's Robot: Russian Robot 'FEDOR' May Become Self-Learning

Aerospace's SeedTECH AI advances to second round of $5M IBM Watson XPRIZE

CHIP TECH
Turkey gets European loan for renewable energy

Oil-rich Alberta sees momentum for wind energy

Construction to start on $160 million Kennedy Energy Park in North Queensland

U.S. wind turbines getting taller and more efficient

CHIP TECH
China's Geely takes 2.7-bn euro stake in Swedish truckmaker Volvo

New catalyst meets challenge of cleaning exhaust from modern engines

VW sacks executive jailed over 'dieselgate': report

Baidu accuses former exec of stealing self-driving car technology

CHIP TECH
Sandia researchers make solid ground toward better lithium-ion battery interfaces

New test procedure for developing quick-charging lithium-ion batteries

AI helps accelerate progress toward efficient fusion reactions

Lasers could soon trigger fusion energy, researchers predict

CHIP TECH
Russia to build nuclear power plant in Sudan

For ailing US nuclear industry, new plants a shot in the arm

Signing of definitive binding agreements for the sale of AREVA NP's activities

Japan company says to close two large ageing nuclear reactors

CHIP TECH
'Virtual gold' may glitter, but mining it can be really dirty

As building floor space increases energy use rising fast

How will customers benefit from tax overhaul, Michigan asks utilities

US void hard to miss at Paris climate summit

CHIP TECH
North Atlantic Oscillation dictates timing of tree reproduction in Europe

African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.