Subscribe free to our newsletters via your
. Solar Energy News .




NANO TECH
UNL team's discovery yields supertough, strong nanofibers
by Staff Writers
Lincoln, NE (SPX) Apr 28, 2013


High-resolution scanning electron microscopy shows a portion of a large bundle of ultra-strong and tough continuous nanofibers developed by UNL researchers. (Photo: Joel Brehm, Dimitry Papkov, Yuris Dzenis).

University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles. Their findings are featured on the cover of this week's April issue of the American Chemical Society's journal, ACS Nano.

"Whatever is made of composites can benefit from our nanofibers," said the team's leader, Yuris Dzenis, McBroom Professor of Mechanical and Materials Engineering and a member of UNL's Nebraska Center for Materials and Nanoscience.

"Our discovery adds a new material class to the very select current family of materials with demonstrated simultaneously high strength and toughness."

In structural materials, conventional wisdom holds that strength comes at the expense of toughness. Strength refers to a material's ability to carry a load. A material's toughness is the amount of energy needed to break it; so the more a material dents, or deforms in some way, the less likely it is to break.

A ceramic plate, for example, can carry dinner to the table, but shatters if dropped, because it lacks toughness. A rubber ball, on the other hand, is easily squished out of shape, but doesn't break because it's tough, not strong. Typically, strength and toughness are mutually exclusive.

Dzenis and colleagues developed an exceptionally thin polyacrilonitrile nanofiber, a type of synthetic polymer related to acrylic, using a technique called electrospinning. The process involves applying high voltage to a polymer solution until a small jet of liquid ejects, resulting in a continuous length of nanofiber.

They discovered that by making the nanofiber thinner than had been done before, it became not only stronger, as was expected, but also tougher.

Dzenis suggested that toughness comes from the nanofibers' low crystallinity. In other words, it has many areas that are structurally unorganized. These amorphous regions allow the molecular chains to slip around more, giving them the ability to absorb more energy.

Most advanced fibers have fewer amorphous regions, so they break relatively easily. In an airplane, which uses many composite materials, an abrupt break could cause a catastrophic crash. To compensate, engineers use more material, which makes airplanes, and other products, heavier.

"If structural materials were tougher, one could make products more lightweight and still be very safe," Dzenis said.

Body armor, such as bulletproof vests, also requires a material that's both strong and tough. "To stop the bullet, you need the material to be able to absorb energy before failure, and that's what our nanofibers will do," he said.

Dzenis' co-authors are mechanical and materials engineering colleagues Dimitry Papkov, Yan Zou, Mohammad Nahid Andalib and Alexander Goponenko in UNL's Department of Mechanical and Materials Engineering, and Stephen Z.D. Cheng of the University of Akron, Ohio.

This research was funded by the National Science Foundation, the Air Force Office of Scientific Research and a U.S. Army Research Office Multidisciplinary University Research Initiative grant.

.


Related Links
University of Nebraska-Lincoln
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nanowires grown on graphene have surprising structure
Champaign IL (SPX) Apr 28, 2013
When a team of University of Illinois engineers set out to grow nanowires of a compound semiconductor on top of a sheet of graphene, they did not expect to discover a new paradigm of epitaxy. The self-assembled wires have a core of one composition and an outer layer of another, a desired trait for many advanced electronics applications. Led by professor Xiuling Li, in collaboration with pr ... read more


NANO TECH
Recipe for Low-Cost, Biomass-Derived Catalyst for Hydrogen Production

China conducts its first successful bio-fueled airline flight

Bugs produce diesel on demand

New input system for biogas systems

NANO TECH
Rights group launches campaign to ban 'killer robots'

Piezoelectric 'taxel' arrays convert motion to electronic signals for tactile imaging

The SPHERES Have Eyes

Humans feel empathy for robots

NANO TECH
U.S. leads in wind installations

Providing Capital and Technology, GE is Farming the Wind in America's Heartland with Enel Green Power

Wind skeptic British minister replaced

Using fluctuating wind power

NANO TECH
Honda's annual net profit soars to $3.7 bn

Chinese prefer gas-guzzling vehicles?

Auto makers show off vehicles in key China market

GM by any other name? Car firms face brand puzzle in China

NANO TECH
New Battery Design Could Help Solar and Wind Energy Power the Grid

NASA to foot the bill for U.S. production of nuclear spacecraft fuel

China, India spar over Persian Gulf oil

Permit delays raise US-Canada pipeline costs: company

NANO TECH
Turkey to finalise nuclear plant deal: minister

Fukushima firm TEPCO suffers $7.0 bn annual loss

S. Korea, US extend nuclear pact

Czech CEZ wants better bids for nuclear plant

NANO TECH
Ethiopia and China sign $1 billion power deal

New York approves power line from Canada

$674 billion annual spend on 'unburnable' fossil fuel assets signals failure to recognise huge financial risks

Germany energy transition faces cuts after European Parliament vote

NANO TECH
Study Led by NUS Scientists Reveals Escalating Cost of Forest Conservation

Wildfires can burn hot without ruining soil

Indonesia moves towards approving deforestation plan

Brazil urged to stop invading indigenous lands




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement