![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Hefei, China (SPX) Aug 03, 2020
A research group led by Prof. CHEN Tao and Prof. ZHU Changfei, and their collaborator Prof. HAO Xiaojing at UNSW, developed a hydrothermal deposition method for the synthesis of antimony selenosulfide for solar cell applications. With this absorber material, the solar cell break the 10% benchmark efficiency barrier. This result has been published in Nature Energy entitled "Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency". Antimony selenosulfide, Sb2(S,Se)3, as the ROHS-compliant and earth-abundant light harvesting material, has received increasing interests during the past few years. The band gap of Sb2(S,Se)3 is tunable in the range of 1.1-1.7 eV, satisfying the requirement for optimal sunlight harvesting. In addition, Sb2(S,Se)3 possesses high extinction coefficient and the film thickness of about 500 nanometers can absorb sufficient light irradiation. With these advantages, the Sb2(S,Se)3 is a promising energy material for the applications of light-weight and portable electricity generation devices. Consider that Sb2(S,Se)3 is consisted of earth-abundant elements and with the excellent stability, the improvement in breaking 10% benchmark efficiency will set a ground for commercialization path. In this study, the authors found that the hydrothermal deposition at supercritical condition enables the generation of compact and flat film with homogeneous element distribution in the lateral direction. These superior characteristics allow the efficient carrier transport and suppression of the detrimental recombination. With further optimizations of the band gap, cation/anion ratio, crystal orientation and defect properties, the device successfully achieves a record power conversion efficiency. The reviewer of this paper highly praised this work, commenting that "This paper presents a landmark efficiency value for Sb2(S,Se)3 solar cells breaking the 10% barrier.", "This achievement sheds new light on the investigation and application of Sb2(S,Se)3 ...". The co-first authors of this articles are Dr. RONG feng, Dr. WANG Xiaomin and LIAN Weitao, from the School of Chemistry and Materials Science of University of Science and Technology of China. The co-corresponding authors are ZHU Changfei (USTC), HAO Xiaojing (UNSW) and CHEN Tao (USTC). Collaborators also include Prof. YANG Shangfeng at USTC, Prof. XING Guichuan at University of Macau, Prof. CHEN Shiyou at the East China Normal University and so on.
![]() ![]() Highly efficient and stable double layer solar cell developed Daejeon, South Korea (SPX) Aug 03, 2020 Solar cells convert light into energy, but they can be inefficient and vulnerable to the environment, degrading with, ironically, too much light or other factors, including moisture and low temperature. An international research team has developed a new type of solar cell that can both withstand environmental hazards and is 26.7% efficient in power conversion. The researchers, led by Byungha Shin, a professor from the Department of Materials Science and Engineering at KAIST, focused on developing ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |