Solar Energy News  
UT Southwestern Researchers Identify Hundreds Of Genes Controlling Female Fertility

They found 348 genes that were active in ovaries in the mice lacking Foxo3, but not in other tissues, indicating that they could function specifically in follicle growth.
by Staff Writers
Dallas TX (SPX) Sep 24, 2007
Researchers at UT Southwestern Medical Center have found nearly 350 genes related to female fertility. Their research may open the door to much wider study in the poorly understood field of infertility. "This study gives us a way to begin to understand the causes of female infertility," said Dr. Diego Castrillon, assistant professor of pathology and senior author of a study appearing in the September issue of the journal Genetics. "It gives us a much more complete list of candidate genes to explore. Before, we didn't even know where to look."

The study was done in mice, "but at the molecular level, ovarian biology is very similar in mice and humans," Dr. Castrillon said.

These discoveries might lead the way to eventually allowing clinicians to test whether an infertile woman has problems with a specific gene, allowing for improved diagnostic tests and tailored therapy in the future, said Dr. Castrillon, a specialist in the diagnosis of infertility and other diseases of women.

About 13 percent of women suffer from infertility, with the most common cause being dysfunction of the ovary. Researchers suspected genetic links in many cases, Dr. Castrillon said.

In mammals, the ovaries go through a developmental stage after birth in which egg cells become nestled in dormant nests called primordial follicles. Later in development, the follicles become activated by a process that researchers don't fully understand, and at puberty, egg cells begin being released for fertilization. The researchers focused on a gene called Foxo3, which controls follicle activation. Normally, follicles are activated on a staggered schedule, so an ovary contains follicles at many different stages of development.

In female mice genetically engineered to lack Foxo3, the follicles are normal at birth, but later become activated all at the same time. This coordinated maturation meant that the genes controlling follicle growth were all turned on at the same time, making it easier to detect these genes.

The researchers employed a method known as expression profiling to identify the active genes. They found 348 genes that were active in ovaries in the mice lacking Foxo3, but not in other tissues, indicating that they could function specifically in follicle growth.

Some of the genes the researchers found were already known to be involved in infertility, which helped validate the experimental method. Most, however, were previously unknown, Dr. Castrillon said.

The researchers also randomly selected a small number of genes from the 348 and looked for them in human ovaries. Those specific genes proved to be active in early development of the human ovary.

Future work will focus on finding out how these genes communicate with each other to control follicle development, and study their contribution to female infertility, Dr. Castrillon said.

The work was supported by the National Institutes of Health.

Related Links
UT Southwestern Medical Center
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Kashmir wildlife benefits from insurgency, hunting ban
Srinagar, India (AFP) Sept 20, 2007
A 10-year-old hunting ban and the ongoing insurgency have brought about a boom in the populations of animals including leopards and bears in Indian Kashmir, wildlife officials say.







  • Nuclear energy to be key in low-carbon energy policy: Brussels
  • Yemen discusses nuclear reactor with US, Canadian firms
  • Japan nuclear body can't say when damaged plant to restart
  • Indian stalemate continues on US nuclear deal

  • Increase In Atmospheric Moisture Tied To Human Activities
  • Climate talks in Montreal to take dual aim
  • Climate change tops future humanitarian challenges: Annan
  • Climate change and desertification two sides of same coin

  • Yam Bean A Nearly Forgotten Crop
  • Grazing Land Management For Better Beef And Reef
  • HARDY Rice: Less Water, More Food
  • UD Leads 5 Million Dollar Research Project On Rice Epigenetics

  • UT Southwestern Researchers Identify Hundreds Of Genes Controlling Female Fertility
  • UT Researcher Sheds New Light On Hybrid Animals
  • Hungry bears plague US west after record drought
  • DNA barcoding: from fruit-flies to puffer fish

  • ATK wins USAF space propulsion contract
  • The Prius Of Space
  • Northrop Grumman KEI Team Completes Fourth Rocket Motor Test
  • Chinese Astronauts Test Traditional Chinese Medicines In Space

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • Boeing Launches WorldView-1 Earth-Imaging Satellite
  • New Faraway Sensors Warn Of Emerging Hurricane's Strength
  • Key Sensor For Northrop Grumman NPOESS Program Passes Critical Structural Test
  • Air France And ESA Join To Offer Passengers Unique View Of Voyage

  • Radio Wave Cooling Offers New Twist On Laser Cooling
  • SSC Communication System Flys On Russian Capsule Foton
  • Engineers Rescue Aging Satellites And Save Millions
  • Russian Satellites: Smaller, Lighter, Cheaper

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement