Solar Energy News  
STELLAR CHEMISTRY
Ultra-hot gas around remnants of sun-like stars
by Staff Writers
London, UK (SPX) Nov 07, 2018

Artist's impression of the hot white dwarf GALEX J014636.8+323615 (white) and its ultra-hot circumstellar magnetosphere (purple) trapped with the magnetic field (green). Credit: N. Reindl.

Solving a decades-old mystery, an international team of astronomers have discovered an extremely hot magnetosphere around a white dwarf, a remnant of a star like our Sun. The work was led by Dr. Nicole Reindl, Research Fellow of the Royal Commission 1851, based at the University of Leicester, and was published 7 November in the journal Monthly Notices of the Royal Astronomical Society.

White dwarfs are the final stage in the lives of stars like our Sun. At the end of their lives, these stars eject their outer atmospheres, leaving behind a hot, compact and dense core that cools over billions of years. The temperature on their surfaces is typically around 100,000 degrees Celsius (in comparison the surface of the Sun is 5,800 degrees).

Some white dwarfs though challenge scientists, as they show evidence for highly ionised metals. In astronomy 'metals' describe every element heavier than helium, and high ionisation here means that all but one of the outer electrons usually in their atoms have been stripped away. That process needs a temperature of 1 million degrees Celsius, so far higher than the surface of even the hottest white dwarf stars.

Reindl's team used the 3.5-metre Calar Alto telescope in Spain to discover and observe a white dwarf in the direction of the constellation of Triangulum, catalogued as GALEX J014636.8+323615, located 1,200 light-years from the Sun.

Analysing the light from the white dwarf with a technique known as spectroscopy, where the light is dispersed into its constituent colours, revealed the signatures of highly ionised metals. Intriguingly these varied over a period of six hours - the same time it takes for the white dwarf to rotate.

Reindl and her team conclude that the magnetic field around the star - the magnetosphere - traps material flowing from its surface. Shocks within the magnetosphere heat the material dramatically, stripping almost all the electrons from the metal atoms.

"It's like a doughnut made up of ultra-hot material that surrounds the already very hot star," explains Reindl. "The axis of the magnetic field of the white dwarf is tilted from its rotational axis. This means that the amount of shock-heated material we see varies as the star rotates.

"After decades of finding more and more of these obscure stars without having a clue where these highly ionised metals come from," she continues, "our shock-heated magnetosphere model finally explains their origin."

Magnetospheres are found around other types of stars, but this is the first report of one around a white dwarf. The discovery might have far-reaching consequences. "We simply didn't take this into account," admits Reindl. "Ignoring their magnetospheres could mean measurements of other basic properties of white dwarfs are wrong, like their temperatures and masses."

It may be that a quarter of white dwarfs go through a stage of trapping and super-heating material. Reindl and her team now plan to model them in detail and to extend their research by studying more of these fascinating objects.

Research Report: "Unravelling the Baffling Mystery of the Ultra-hot Wind Phenomenon in White Dwarfs"


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Artificial intelligence bot trained to recognize galaxies
Perth, Australia (SPX) Nov 01, 2018
Researchers have taught an artificial intelligence program used to recognise faces on Facebook to identify galaxies in deep space. The result is an AI bot named ClaRAN that scans images taken by radio telescopes. Its job is to spot radio galaxies - galaxies that emit powerful radio jets from supermassive black holes at their centres. ClaRAN is the brainchild of big data specialist Dr Chen Wu and astronomer Dr Ivy Wong, both from The University of Western Australia node of the Internati ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Alcohols as carbon radical precursors

Reducing US coal emissions through biomass and carbon capture would boost employment

Scientists find a 'switch' to increase starch accumulation in algae

Laser technique may open door to more efficient clean fuels

STELLAR CHEMISTRY
Shape-shifting robots perceive surroundings, make decisions for first time

NASA researchers teach machines to "see"

Humans help robots learn tasks

Elephant trunks form joints to pick up small objects

STELLAR CHEMISTRY
Coal-dependent Poland shifts on wind ahead of climate meeting

Extreme weather forcing renewable operators to strengthen project economics

Wind farms and reducing hurricane precipitation

Ingeteam opens new high-tech production facility for electrical wind turbine components in India

STELLAR CHEMISTRY
Electriq~Global launches water-based fuel to power electric vehicles

Carbon-busting system to launch at massive Las Vegas auto week

Driverless vehicle experts get hands on experience in South Australia

Ford and Baidu partner up on testing self-driving cars in China

STELLAR CHEMISTRY
New quantum criticality discovered in superconductivity

Ben-Gurion University researchers achieve breakthrough in process to produce hydrogen fuel

Manganese may finally solve hydrogen fuel cells' catalyst problem

Chilean court authorizes Chinese group's lithium production purchase

STELLAR CHEMISTRY
Saudi Arabia to build first nuclear research reactor

Russia, Uzbekistan hail $11 bn nuclear plant project during Putin visit

Scientists discover new properties of uranium compounds

US curbs China nuclear exports as Trump warns Americans not 'stupid'

STELLAR CHEMISTRY
Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

STELLAR CHEMISTRY
Fierce winds raze forests in storm-hit Italy

Two-thirds of remaining wilderness on Earth located in five countries

Brazil environment ministry condemns Bolsonaro plan

Economy depends on environment, WWF warns Brazil's Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.