![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Hefei, China (SPX) Jan 25, 2023
Recently, a research team led by Prof. CHEN Tao from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) revealed the formation and evolution of the point defect of antimony selenosulfide. This work was published in Advanced Materials. Antimony selenosulfide, i.e., Sb2(S,Se)3, features great stability, no inclusion of rare or toxic elements, excellent photovoltaic property, and low cost, which make it an ideal photovoltaic material. Due to the quasi-one-dimensional structure and high extinction coefficient of the material, it has unique advantages in fields such as ultralight devices, portable power sources, or building-integrated photovoltaics. To improve the performance of devices, it is necessary to understand the basic properties of this new photovoltaic material.. The research team focused on the point defect of antimony selenosulfide. They utilized optical deep-level transient spectroscopy (O-DLTS) to detect the characteristics of the defect of antimony selenosulfide driven by temperature. Researchers then investigated the variation of the material composition during annealing to reveal the formation and evolution of the point defect. The initial hydrothermal deposition results in the formation of point defects with high formation energy, which was the result of random deposition of ions driven in hydrothermal condition, according to the researchers. Post-annealing and the thin-film crystalization led to the loss of sulfur and selenium anions as well as the formation vacancy defect (VS(e)). Since the formation energy of cation/anion inversion defects is relatively low, antimony ions would transfer and fill anion vacancies, eventually forming the SbS(e) inversion defect. The study deepens the understanding of the formation and evolution of point defects of antimony selenosulfide and offers a new method to study such processes. It also provides a guidance for designing methods to produce films and inhibiting the formation of deep-level point defects.
Research Report:Thermally Driven Point Defect Transformation in Antimony Selenosulfide Photovoltaic Materials
![]() ![]() Solar tower power plants - sunlight becomes electricity on demand Berlin, Germany (SPX) Jan 23, 2023 Solar power is becoming an increasingly important source of energy worldwide. At present, photovoltaic systems are predominantly being used in Germany. For sunny countries, solar tower power plants are a valuable addition. They store heat and can generate electricity at any time - even when the sun is not shining. The new highlight images from the German TerraSAR-X and TanDEM-X radar satellites present unique images of the changing Earth and also show solar thermal power plants around the world. I ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |