![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Guildford UK (SPX) Aug 26, 2021
A consortium led by the University of Surrey has been awarded close to Pounds 3 million to help design perovskite solar cells to power wearable technologies and Internet of Things (IoT) devices. Crystalline silicon solar cells have dominated the solar market for many years, but they cannot power the rapidly growing portable electronics market, particularly that of wearables and IoT devices which are expected to reach trillions of units in the next few years. There are already over 20 billion IoT devices in the market that currently map and gather information, and 127 new devices are connected to the internet each second, leading to a potential IoT market worth US$1 trillion by 2023. Therefore, it has become a necessity to develop cheaper materials together with scalable manufacturing techniques to further accelerate the uptake of solar electricity. The team led by Surrey has received Pounds 2.3 million from the Engineering and Physical Sciences Research Council (EPSRC) and Pounds 500K from industrial partners to research, design and develop flexible perovskite photovoltaic devices that can be produced at a high volume and an ultra-low cost. The research team is a partnership between Surrey and leading experts in perovskite photovoltaics from the Universities of Oxford, Sheffield and Cambridge. The team is also supported by partners including National Physical Laboratory, NSG Group, Swift Solar, Ossila, Oxford PV, Coatema and QinetiQ. Professor Ravi Silva, project lead and Director of the Advanced Technology Institute at the University of Surrey, said: "We are grateful to the EPSRC and our industrial partners for the support they have shown this project. We are setting out to create a technology that can bridge the multi-scale energy needs of emerging markets - and beyond this, also tackle the challenge of our age: climate change. "We are confident that perovskite photovoltaics are a key part of the puzzle of meeting the net-zero emission target by 2050." Dr Wei Zhang, co-investigator of the project from the University of Surrey, said: "We are proud to work with some of the best research teams in perovskite photovoltaics. Success in our research will open the very large wearables and IoT power-source markets and will help power the increasing number of mobile wireless technologies."
![]() ![]() The dream artificial photosynthesis technology ventures from the laboratory Yeongi-gun, South Korea (SPX) Aug 20, 2021 Korean researchers are striving to turn artificial photosynthesis technology into reality to achieve carbon neutrality or accomplish a net carbon emission value of 0. Artificial photosynthesis is a technology that mimics natural photosynthesis by using the received sunlight energy to convert carbon dioxide into high-value compounds such as ethylene, methanol, and ethanol. However, economic and technical constraints have allowed the petinent research to progress only under the laboratory conditions ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |