Solar Energy News  
EXO WORLDS
Unusual molecular and isotopic content of planetary nebulae
by Staff Writers
Swarthmore PA (SPX) Jun 02, 2020

illustration only

Observations of planetary nebulae have revealed unusual molecular content and surprising enrichments of rare isotopes, challenging both chemical models as well as our current understanding of stellar nucleosynthesis.

Using the Arizona Radio Observatory 12-m and submillimeter telescopes and the IRAM 30-m telescope near Granada, Spain, astronomers at the University of Arizona discovered an unexpected chemical inventory in planetary nebulae. These results, presented at the 236th meeting of the American Astronomical Society by Deborah Schmidt (now at Swarthmore College), suggest that planetary nebulae play a vital role in supplying interstellar space with material rich in molecules, not just atoms.

Further, the molecular data have revealed unusual enrichments of rare isotopes of common elements such as carbon, oxygen, and nitrogen, including 13C, 15N, and 17O. The high abundances of these unusual isotopes in planetary nebulae cannot be explained by our current understanding of how most stars die, suggesting additional processes, even violent explosions, may be occurring.

Planetary nebulae represent the last gasps of dying Sun-like stars. At the end of their lives, these stars eject their outer layers, forming a brilliantly fluorescing envelope which expands away from the remnant core. This ejecta mixes in with the low-density matter that exists between stars, known as the interstellar medium, where it may later be incorporated into newly forming stellar systems.

The vestigial core, called a white dwarf, emits copious amounts of high-energy radiation as its temperature increases into the planetary nebula phase. As a result, it was long thought that the nebular material should be elemental in composition, with any molecules remaining from earlier stages in the star's life being destroyed by the energetic photons from the white dwarf.

At complete odds with these model predictions, observations conducted by Schmidt as part of her dissertation work at the University of Arizona unearthed a wealth of unusual molecular species in over 25 planetary nebulae.

These results unambiguously demonstrate that molecules are important components of the composition of planetary nebulae, and they may subsequently be "polluting" the diffuse interstellar medium. Historically, astronomers have struggled to explain the abundances of the polyatomic molecules observed in diffuse gas, as there is not enough dense material to create them on a realistic timescale. The discoveries of Schmidt et al. suggests a novel solution for this ongoing dilemma.

The molecular observations of these planetary nebulae also offer unique insight into the nuclear reactions that occurred in the progenitor star, and the elements and their different nuclei that were produced. This is because observations at radio and millimeter wavelengths are conducted with the highest spectral resolution, allowing molecules with different elements and isotopes to be clearly distinguished.

Schmidt and colleagues discovered that the molecules they have found indicate whether the progenitor star was rich in carbon, for example. Furthermore, they have been able to measure abundance ratios between the main element and its rarer forms, such as 12C/13C or 14N/15N. Such ratios are known to be sensitive probes of the processes that occurred deep within the star before it died, and have been used as one of the few "benchmarks" for testing stellar modeling. Now, for the first time, they can be accurately measured in planetary nebulae, giving a "snapshot" of the star's final stages.

What did the observations reveal in planetary nebulae? Lots of carbon, first of all, along with high abundances of 13C, and in one nebula, K4-47, hugely elevated amounts of 15N and 17O - higher than observed anywhere else in the universe (Schmidt et al. 2018). The high concentrations of 13C, 15N, and 17O observed in planetary nebulae have not been predicted by models of dying stars.

Specifically, Schmidt and collaborators suggest that the progenitor stars of these planetary nebulae may have undergone an unexpected event as they made their last "gasps" - a helium shell flash, in which hot carbon from deep within the star is blown out to the stellar surface. In the violent explosion that occurs, 13C, 15N, and 17O are created and ejected from the star. Such an energetic process can also explain the unusual bipolar and multipolar geometries typically exhibited by planetary nebulae, giving them their "hourglass" and "cloverleaf" shapes.

Dying stars also produce dust grains. Some of these grains have actually made their way to our solar system, where researchers such as collaborator Thomas Zega extract them from pristine meteorites. Elemental isotopes can be measured in these so-called "presolar" grains, providing a Rosetta Stone of their history. Some of these grains have been found to exhibit consistently low 12C/13C, 14N/15N, and 16O/17O ratios - a puzzle for cosmochemists, as these ratios cannot be explained by normal models.

For lack of a better explanation, it has been speculated that these atypical grains originated in novae, a type of thermonuclear explosion which occurs on the surface of the low-mass stellar remnants in binary systems. Their unusual ratios, however, match those found in K4-47, suggesting that planetary nebulae are their true birthplaces.

Planetary nebulae supply most of the matter found in interstellar space, which subsequently leads to stellar systems like our own. The work of Schmidt and colleagues has shown that these objects contain hidden molecules and elemental isotopes, invisible in the colorful images that portray them. Exploring these new, unexpected facets of planetary nebulae is crucial to our understanding of the history of stars and the evolution of matter that formed our solar system.

Research Report: "The Unexpected Molecular Complexity of Planetary Nebulae as Revealed by Millimeter-wave Observations"


Related Links
IRAM 30-meter telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
In Planet Formation, It's Location, Location, Location
Baltimore MD (SPX) May 29, 2020
Astronomers using NASA's Hubble Space Telescope are finding that planets have a tough time forming in the rough-and-tumble central region of the massive, crowded star cluster Westerlund 2. Located 20,000 light-years away, Westerlund 2 is a unique laboratory to study stellar evolutionary processes because it's relatively nearby, quite young, and contains a large stellar population. A three-year Hubble study of stars in Westerlund 2 revealed that the precursors to planet-forming disks encircling sta ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

Solve invasive seaweed problem by turning it into biofuels and fertilisers

EXO WORLDS
The concept of creating brain-on-chip revealed

Algorithm quickly simulates a roll of loaded dice

Denmark develops robot to conduct coronavirus tests

Next generation of soft robots inspired by a children's toy

EXO WORLDS
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

EXO WORLDS
Volkswagen invests 2 bn euros in Chinese electric vehicle sector

Top German court to rule on VW 'Dieselgate' compensation

Uber says slashing jobs and trimming investment

Tesla, California appear to end standoff over restarting factory

EXO WORLDS
Surprise link found to edge turbulence in fusion plasma

Next-gen laser facilities look to usher in new era of relativistic plasmas research

Discovery about the edge of fusion plasma could help realize fusion power

Skoltech scientists show a promising solid electrolyte is 'hydrophobic'

EXO WORLDS
General Atomics integrates nuclear division into Electromagnetics Systems Group

Framatome to provide engineering services to EDF in the United Kingdom

EDF submits plans for controversial UK nuclear plant

US awards two projects utilizing the BWRX-300 Small Modular Reactor Design

EXO WORLDS
World needs 'green recovery', health pros tell G20 leaders

UK electricity plant nears full switch away from coal

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

EXO WORLDS
Tropical forests can handle the heat, up to a point

Uruguay renegotiates $3 bn pulp plant deal with Finland's UPM

With attention on virus, Amazon deforestation surges

Brazil to deploy army to fight Amazon deforestation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.