Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Viewing deeper into the quantum world
by Staff Writers
Barcelona, Spain (SPX) Jun 13, 2014


This is an artistic impression of the experiment. Image courtesy ICFO.

One of the important tasks for quantum physics researchers and engineers is designing more sensitive instruments to study the tiny fields and forces that govern the world we live in. The most precise measuring instruments devised to date, such as atomic clocks or gravitational wave detectors, are interferometric in nature and operate according to the laws of quantum mechanics.

As with all quantum objects, photons - the basic building blocks of light - display a "wave-particle" duality. Interferometers exploit the wave-like behaviour of photons to measure a signal, known as a phase shift, affected by tiny forces acting on the interferometer. However, the particle-like behaviour of the same photons introduces noise into the measurement, reducing the quality of the results and limiting the sensitivity of these instruments.

This limitation is an expression of Heisenberg's famous Uncertainty Principle, which, in this context, states that the more precisely we know the phase of an interferometer signal, the less precisely we know the number of particles that are being measured, and vice versa.

The standard approach for overcoming this sensitivity limit is to use quantum-entanglement among the photons, meaning that individual photons become correlated at the quantum level. The noise introduced by a quantum fluctuation associated with one photon can be cancelled by an equivalent and opposite fluctuation from another photon.

An alternative approach exploits interactions between particles in a nonlinear interferometer to enhance the signal that is being measured. Theorists have predicted that such nonlinear interferometers should outperform their linear counterparts when a sufficiently large number of photons are used in the measurement.

So what is the difference between these two types of interferometers? In a linear interferometer, the photons do not interact amongst each other within the device - instead, researchers must first create a fragile entangled state and then send them through the interferometer.

In contrast, in a nonlinear interferometer all interactions between photons take place within the device itself. Even without generating entanglement among the photons, the signal of the interferometer is enhanced because the response of one photon is increased by the presence of other photons within the device.

In a pioneering experiment that took place three years ago, ICFO researchers led by ICREA Prof at ICFO Morgan Mitchell were able to experimentally demonstrate a proof-of-principle nonlinear interferometer that exploited interactions between photons to measure the tiny magnetization of a cloud of laser-cooled atoms.

Now the same group has gone further with a new study, recently published in Physical Review X, which, for the first time, demonstrates that such a nonlinear interferometer can outperform an equivalent linear measurement, confirming the proposed theoretical predictions.

Robert Sewell, researcher in the group and first author of the article, explains that "this discovery is important because it demonstrates that a nonlinear quantum measurement can actually be better than a linear one. Moreover, we demonstrate this by measuring a quantity of real interest - a magnetic field. "

Morgan Mitchell comments "This is quantum physics in the age of social networks, blogging, and Wikipedia. A group of quantum particles acting together can tell us more about the world than the most perfect group of lonely, isolated particles. This will come as no surprise to a modern teenager, but until very recently it was considered impossible by most physicists. I can't wait to see how this will change our approach to detecting, for example, the magnetic fields of the brain."

.


Related Links
ICFO-The Institute of Photonic Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Exotic Particle Confirmed
Julich, Germany (SPX) Jun 10, 2014
or decades, physicists have searched in vain for exotic bound states comprising more than three quarks. Experiments performed at Julich's accelerator COSY have now shown that, in fact, such complex particles do exist in nature. This discovery by the WASA-at-COSY collaboration has been published in the journal Physical Review Letters. The measurements confirm results from 2011, when the mor ... read more


TIME AND SPACE
Genome could unlock eucalyptus potential for paper, fuel and fiber

More than just food for koalas -- eucalyptus -- a global tree for fuel and fiber

EU agrees plan to cap use of food-based biofuels

York scientists provide new insights into biomass breakdown

TIME AND SPACE
New computer program aims to teach itself everything about anything

Capabilities of unmanned ground vehicles on display

Supercomputer emulates teenager to pass 'Turing Test'

Football-playing robots eye their own cup, and beyond

TIME AND SPACE
Scotland attracts more investments to renewable energy sector

Sopcawind, a multidisciplinary tool for designing wind farms

Scotland says it's well on its way to cut emissions by as much as 80 percent

Snake-like buoys showing their energy mettle off Scottish coast

TIME AND SPACE
Tesla gives up patents to 'open source movement'

European taxis cause chaos in app protest

Elon Musk: 'We could definitely make a flying car'

Uber taxi app valued at $17 bn in new funding round

TIME AND SPACE
Funky ferroelectric properties probed with X-rays

Magnetic cooling enables efficient, 'green' refrigeration

Charging Portable Electronics in 10 Minutes

Coal consumption highest since 1970

TIME AND SPACE
AREVA awarded a contract to provide services for Kozloduy 5 and 6 VVER nuclear reactors

AREVA to provide additional modernization services for Gosgen Facility in Switzerland

India nuclear reactor attains 'full capacity'

French police raid Areva over UraMin purchase

TIME AND SPACE
US invests in technology to make electric grid more secure

Report Estimates Costs and Benefits of Compliance with Renewable Portfolio Standards

Google seeks to transform century-old US utility industry

Virginia Tech architect reveals 'green roofs' need not go to great depths to work

TIME AND SPACE
Australian natural wonders under UNESCO spotlight

Saving trees in tropics could cut emissions by one-fifth

Forest loss starves fish

For forests, an earlier spring than ever




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.